BOVINE NEONATOLOGY

Susana Astiz, Antonio Gonzalez-Bulnes
Department of Animal Reproduction, INIA, Avda Pta. de Hierro s/n, 28040 Madrid, Spain

Laura Elvira-Partida, Natividad Perez-Villalobos
TRIALVET S.L., C/ Encina, 22, 28721 Cabanillas de la Sierra, Madrid, Spain

Manuel Cerviño-Lopez
Boehringer-Ingelheim España División Veterinaria, Prat de la Riba, s/n - Sector Turó Can Matas 08173 Sant Cugat del Vallés, Barcelona, Spain

Juan Vicente Gonzalez-Martin
TRIALVET S.L., C/ Encina, 22, 28721 Cabanillas de la Sierra, Madrid, Spain
Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universidad Complutense of Madrid (UCM), Avda Pta. de Hierro s/n, 28040, Madrid, Spain

Keywords: bovine neonatology, calf, neonate, prematurity, obstetrics, birth acidosis, hypothermia, hypoglycemia, atresia anni, weak calf syndrome, resuscitation, neonatal immunology, stress, neonatal vaccination, colostrum, passive transfer, neonatal septicemia, neonatal diarrhea, E. coli, Cryptosporidium, rotavirus, coronavirus, Salmonella, dehydration, rehydration, ancillary treatments, antibiotical therapy, mother vaccination, atelectasis, Mycoplasma, IBR, enzootic pneumonia, Pasteurellae

Contents

1. Definition of neonate
2. Physiological characteristics of the neonatal calf
3. Most common congenital malformations
4. Prematurity
5. Early neonatal problems: dystocic calvings
5.1. Obstetrics Injuries
5.2. Birth Acidosis, Hypothermia and Hypoglycemia
5.3. Weak calf syndrome (WCS)
6. Resuscitation and care of the neonatal calf
6.1. Establishing a Patent Airway
6.2. Initiating Breathing
6.3. Establishing Adequate Circulation
7. Immunology of the neonatal calf
7.1. Development and Function of the Fetal Immune System
7.2. Characteristics of the Neonatal Immune System
7.3. Impact of Stress on Neonatal Calves
7.4. Young Calf Vaccination and Maternal Antibody Interference
8. Colostrum: the cornerstone of neonatal health
8.1. Definition and Origin

©Encyclopedia of Life Support Systems (EOLSS)
The term “neonate” defines calves under 28 days old. During the neonatal period, the calf is at high risk of suffering different diseases, and neonatal morbidity and mortality cause large economic losses. In fact, 75% of the mortality of dairy heifers occurs during the first month of life. In beef cattle, the mortality rate until weaning is lower, around 10%, but it also peaks during the neonatal period.

The first problem we find is prematurity (not-to-term calves) and several malformations. The most common congenital defects of the calves are described throughout the text. Additionally, dystocia (difficult delivery) is the first cause of mortality in the neonatal period, and can also predispose the animal to other infectious diseases. We have explained several problems induced directly by dystocia, such as obstetrics fractures, umbilical cord entrapment and birth edema. These circumstances lead to neonatal acidosis, hypoglycemia, hypothermia and to what is designated as “weak calf syndrome”. An appropriate resuscitation protocol, as described and recommended by the authors, is essential in order to ensure healthy, strong, neonatal calves.

During the neonatal period, the first infectious pathological disease we observe is neonatal septicemia, affecting calves between 2 and 6 days old. Neonatal diarrhea is by far the main infectious problem, followed by pneumonia in older neonatal calves aged 2-28 days old or even older.

By applying good practices, these diseases can be almost completely controlled, thereby reducing the associated losses. Indeed, by implementing good management procedures and a correct prophylaxis protocol as recommended by the authors, we can dramatically reduce the morbidity and mortality of rearing calves in both dairy and beef bovine
farms. There are several risk factors we should take into account, but the cornerstone of calves’ health is intake of good-quality colostrum at the appropriate time. This topic will be explored in depth in the text.

Neonatal morbidity and mortality cause large economic losses in both beef and dairy cattle (Nagy, 2009). During the neonatal period, the calf is at high risk of suffering different diseases. In fact, 75% of the mortality of dairy heifers during rearing occurs during the first month of life (Radostits, 2007). In beef cattle, the mortality rate until weaning is lower, around 10%, but is maximum during the neonatal period, when it varies between 4 and 6% (Wikse et al., 1994). Throughout this period, diarrhea is by far the main infectious problem, followed by pneumonia. Nevertheless, by applying good husbandry and management practices these infectious diseases can be almost completely controlled, thereby reducing the associated losses. Thus, depending on farm management, we can find herds where diarrhea or pneumonia is a significant cause of mortality, while in other farms both diseases are uncommon.

In addition, dystocia is the first cause of mortality in the neonatal period, and can also predispose the animal to other infectious diseases. This explains the differences between mortality in heifers and cows: mortality in the first 24 hours of life is around 8% in heifers and 3% in cows, while mortality from 24 h until weaning is 3% in heifers and 2% in cows (Toombs et al., 1994).

1. Definition of Neonate

Due to the importance of this period, this chapter will cover the most critical points related with the neonatal calf. Thus, we should first define what we mean by neonatal period. Starting with the beginning of pregnancy until the calf stage we can consider different periods in the life of the calf (Table 1).

<table>
<thead>
<tr>
<th>Period</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fetal</td>
<td>Between 42-270 days of pregnancy</td>
</tr>
<tr>
<td>Perinatal</td>
<td>For most authors, from 270 days of pregnancy to exactly 24 hours of life. However, the term "perinatal" sometimes includes the first 28 days, and even up to six months</td>
</tr>
<tr>
<td>Neonatal</td>
<td>From delivery of the calf until 28 days of life. This period can be subclassified into "early neonatal period", which includes the first 24 hours of life, and "late neonatal period" from 2-28 days of life</td>
</tr>
<tr>
<td>Calf</td>
<td>From 28 to 90 days of age. Some authors extend this period to 6 months postpartum</td>
</tr>
</tbody>
</table>

Table 1. Different stages of a calf’s life, including the fetal period.

2. Physiological Characteristics of the Neonatal Calf

The event that can be considered the key to the transition from an intrauterine life, in which gas exchange is performed through the placenta by the umbilical cord, to an extrauterine life, in which lungs are responsible for blood oxygenation, is the initiation
of respiratory movements, which involve lung inflation and subsequent oxygenation of the blood. Cardiopulmonary adaptations to extrauterine life are one of the most important physiological changes that must occur for calf survival (Nagy, 2009).

These events begin with the rupture of the umbilical cord, which causes hypoxia and an increase in partial CO₂ pressure (PCO₂). This stimulates gasping reflexes in the calf and subsequent inflation of the lungs. Until the first inflation, the calf suffers a slight respiratory acidosis, which causes minor metabolic acidosis; thus, acidosis is a normal characteristic in recently delivered calves (Grove-White, 2000). Indeed, venous pH studies have shown that normal pH in healthy neonatal calves is 7.2-7.3, while in cases of dystocia at parturition the pH value can fall to 7 or even less (Schujt and Taverne, 1994; Grove-White, 2000). Metabolic acidosis is corrected a few hours after birth, while respiratory acidosis can persist for up to 48 h. Nevertheless, a study by Schujt and Taverne (1994) showed that under normal situations, the venous pH range reaches physiological values within 12 hours of life. A sign that we can use to evaluate acidosis is the position taken by the calf. A healthy calf puts his head up after just a few minutes, and adopts the position of sternal recumbence in 4 ± 2 minutes.

As a result of lung inflation, the pulmonary vascular bed opens up and pulmonary blood flow increases considerably. This causes a change in the pressure relationship within the cardiovascular system, producing the functional closure of the foramen oval, ductus arteriosus and ductus venosus (Grove-White, 2000).

3. Most Common Congenital Malformations

![Prevalence of the most common congenital defects in calves](figure1.png)

Figure 1. Prevalence of the most common congenital malformations in calves (Radostits et al., 2007).
Figure 1 depicts the prevalence of the most common congenital problems of calves (Radostits et al., 2007).

Although many malformations show similar clinical signs or patterns, most of them may have one or more etiologies. For this reason, we have classified in Table 2 the most frequent malformations according to the system affected and signs, and we explain the different possible etiologies. Congenital malformations may have a genetic origin (“inherited defects”) or may be “non-inherited defects”. In Figure 2 the etiologies of the most frequent non-inherited congenital defects in calves are shown.

<table>
<thead>
<tr>
<th>Affected system or process</th>
<th>Designation and lesional and clinical pattern</th>
<th>Etiology</th>
<th>Type of malformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Musculoskeletal system</td>
<td>Contracted tendons (the least severe pattern) and arthrogryposis (the most severe one). Frequently associated with cleft palate</td>
<td>The most frequent musculoskeletal disorder. The mild cases of contracted tendons usually heal by themselves with time, while severe cases need surgery. Etiology • Lack of space in the uterus (heifers or twins) • Poisonous</td>
<td>Inherited and non-inherited</td>
</tr>
</tbody>
</table>

©Encyclopedia of Life Support Systems (EOLSS)
plants such as *Lupinus* *spp.*, *Astragalus* *spp.*, *Lathyrus* *spp.*, and *Oxytropis* *spp.* chemically reduce fetal movements

- Damage in the fetal central nervous system that reduces fetal movement.

The frequent association with cleft palate is due to a constant reflexed position of the neck that presses the tongue on the hard palate, preventing its closure.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
<th>Inheritance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chondrodysplasia.</td>
<td>Diminished endochondral osteogenesis. “Bulldog calf”, shortened legs</td>
<td>Some chondrodysplasia phenotypes are lethal (produce abortion), while others produce viable but short-legged calves. Etiology: some forms are caused by genetic factors; the most common one, designated "bulldog calf", is caused by a mutation in the gene for the connective tissue protein, while other forms are multifactorial and are triggered by nutritional deficiencies.</td>
</tr>
<tr>
<td>Complex vertebral malformation syndrome (CVM). Mild bilateral flexion of the carpal and</td>
<td>Autosomal recessive congenital lethal malformation due to a single-nucleotide</td>
<td>Inherited</td>
</tr>
<tr>
<td>Condition</td>
<td>Description</td>
<td>Inheritance</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>Metacarpophalangeal joints with rotation of the digits</td>
<td>Verbal malformation, malformed ribs, arthrogryposis of the tarsal and metatarsophalangeal joints. Malformation of cervical and thoracic vertebrae, with shortening of the neck. The extent of vertebral malformation varies.</td>
<td>Autosomal recessive congenital malformation. The inheritance of syndactylism in Holstein-Friesian cattle is slight because the number of affected limbs and degree of digital fusion varies, with some homozygous animals appearing grossly normal.</td>
</tr>
<tr>
<td>Syndactylism or ‘mulefoot’</td>
<td>Fusion of digits III and IV, which are enclosed by a common claw capsule. Secondary adaptive changes are found in the muscles, tendons, nerves and vascular supply of the distal limb.</td>
<td>Inherited</td>
</tr>
<tr>
<td>Muscular hypertrophy or “double-muscled cattle”</td>
<td>Mutation that represses the myostatin protein, thereby augmenting muscle growth. Although this characteristic has been selected in some breeds for beef cattle production, this malformation is associated with dystocia and is therefore an undesirable trait in cattle.</td>
<td>Inherited</td>
</tr>
<tr>
<td>System</td>
<td>Condition</td>
<td>Origin/Inheritance</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Central nervous system</td>
<td>Hydranencephaly, cerebellar hypoplasia, internal hydrocephalus</td>
<td>Genetic origin or infectious etiology: AKAV and BTV in the case of hydranencephaly and/or BVDV in the case of cerebellar hypoplasia and internal hydrocephalus.</td>
</tr>
<tr>
<td>Cardiovascular system</td>
<td>Ventricular septal defect. Poor prognosis but in rare cases, animals remain asymptomatic for a long time. Frequently associated with other congenital cardiac or vascular defects and other malformation such as microphthalmia and lack of tail</td>
<td>No known inherited etiology. The most frequent cardiovascular abnormality in bovine neonates.</td>
</tr>
<tr>
<td>Digestive system</td>
<td>Cleft palate or palatoschisis. Frequently associated with arthrogryposis due to a constant reflexed position of the neck, causing the tongue to press against the hard palate, thereby inhibiting closure of the palate. The calves suckle with difficulties and develop aspiration pneumonia, causing death.</td>
<td>A common inherited defect in calves.</td>
</tr>
<tr>
<td></td>
<td>Atresia coli and ani. Complete closure of a segment of the intestinal tract: it is called atresia coli when the ascending colon is affected, and atresia ani when the anus is affected.</td>
<td>The origin can be genetic. The possibility of causing this malformation in early pregnancy by transrectal palpation of the amniotic sac before 40 days of gestation was suggested, but this has been called into question. Affected calves do not</td>
</tr>
</tbody>
</table>
Abdominal wall closure defects

From small umbilical hernia (the least severe pattern), omphalocele, gastroschisis or *Schistosoma reflexus* (the most severe pattern). *Schistosoma reflexus* involves complete exposure of the thoracic and abdominal viscera. The calf is always stillborn, as they cannot adapt to extrauterine life. Acute angulation of the vertebral column and cardiac malformations are also frequent.

Etiology of umbilical hernia:
- Non-genetic: traumatic or infectious, such as umbilical abscesses or suckling by other calves
- Genetic

<table>
<thead>
<tr>
<th>Inherited or non-inherited</th>
</tr>
</thead>
</table>

Reproductive tract

Freemartin (sterile female born with a male in a twin pregnancy). Freemartin heifers can be diagnosed. They present an enlarged clitoris, excessive hair growing at the ventral vulvar commisure and hypoplasia of female internal genitalia beyond the cervix

The most frequent reproductive malformation. Etiology: over 90% of twin calves have a fused placenta with a common blood supply. Thus, a heifer calf starts its development as a female, but undergoes exchange of embryonic cells and hormones before the development of sexual dimorphism, resulting in varying degrees of genital hypoplasia and masculinization.

<table>
<thead>
<tr>
<th>Non-inherited</th>
</tr>
</thead>
</table>

Metabolic malformations

Bovine leukocyte adhesion deficiency (BLAD).

No observable lesions at birth. First signs are seen in the first week of life, if the defect is not surgically corrected.

Autosomal recessive inherited malformation. The mutation in the *ITGB2* gene.

<table>
<thead>
<tr>
<th>Inherited</th>
</tr>
</thead>
</table>
between 2 weeks and 8 months of life and consist of recurrent infections. BLAD homozygotes are not viable and most calves die within the first year of life. BLAD should initially be suspected if there are signs of immunodeficiency combined with high numbers of circulating neutrophils. The diagnosis is confirmed by genotyping. Heterozygotes are not affected but show poor feed utilization and growth rates. Clinical signs consist of recurrent and prolonged mucosal and epithelial infections caused in most cases by opportunistic bacteria and fungi.

<table>
<thead>
<tr>
<th>Citrulinemia. Lethal neurological disease of neonatal Holstein-Friesian calves. No observable lesions at birth. Usually clinical signs begin after 24 h of life. Clinical signs are the result of hyperammonemia: poor feeding ability and depression, aimless head pressing with apparent blindness and odontoprisis. Within 4-5 days of symptom onset, recumbence, convulsions, collapse and death occur.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic etiology: a point mutation in the gene coding for argininosuccinate synthetase, an enzyme responsible for converting potentially toxic ammonia to urea through the urea cycle. The mutation results in an impaired urea cycle and subsequent extreme elevation of citrulline in plasma. Citrulline and ammonia concentrations in blood and cerebrospinal fluid are markedly elevated. As a result, the diagnosis can be confirmed through biochemical analysis or</td>
</tr>
<tr>
<td>Inherited</td>
</tr>
</tbody>
</table>
Table 2. Most common congenital defects classified by both affected organic system and clinical signs (adapted from Blowey and Weaver 2003; Radostits et al., 2007; Agerholm, 2007; Windsor and Agerholm, 2009; White et al. 2010).

Inherited defects may result in a wide spectrum of disorders, not only severe malformations easily detected by exploration at birth, but also metabolic diseases, which are usually diagnosed days after birth. Some breeds and families show extraordinarily high prevalence of specific genetic disorders because of excessive inbreeding. It is certain that the extensive use of artificial insemination has resulted in a significant increase in the occurrence and nature of particular congenital defects in cases when the semen donors were carriers of genetic disease.

When environmental agents are present, the appearance of non-inherited malformations will depend on both the agent and the fetal age at exposure. Usually this kind of malformation appears in an epizootic way. Due to exposure early in the fetus' life, diagnosis is difficult at the time the calf is born.

In the face of an epizootic congenital defect we should look for:

- A genetic problem in which congenital defects are associated with a particular sire.
- Environmental agents such as poisonous plants or viral exposure, usually early in the pregnancy of affected cows. When viruses are involved, the outcome depends on the phase of pregnancy. Usual outcomes are abortions, stillbirths, birth of non-viable neonates or viable neonates with growth retardation or dysfunction (e.g. tremors, blindness).

The main viruses involved in non-inherited congenital defects are the following.

Bovine viral diarrhea virus (BVDV) of the genus Pestivirus and family Flaviviridae occurs in two genotypes (I and II), and two biotypes: non-cytopathic (NCP) and cytopathic (CP). Type I virus infection usually remains subacute in immunocompetent adult cattle, whereas type II infection has been associated with severe and highly fatal thrombocytopenia and a hemorrhagic syndrome that causes outbreaks in dairy herds. Infection of a non-immune pregnant cow causes in utero infection and produces different results depending on the pregnancy phase at the time of infection (Figure 3).

Infection during the first 45 days of pregnancy results in embryonic death and resorption, with irregular return to estrus and decreased conception rate in subsequent inseminations. Intrauterine infection between 45 and 125 days of pregnancy triggers embryonic mortality with abortion/mummification or congenital defects of the central nervous system and ocular abnormalities. Congenital morphological defects include: cerebellar hypoplasia (Image 1), in which calves are unable to stand and walk normally,
and eye defects, including retinal atrophy, optic neuritis, cataract and/or microphthalmia with retinal dysplasia, which results in varying degrees of blindness.

Image 1. Calf cerebellar hypoplasia is characteristic of intrauterine infection by BVD.

Figure 3. Effects of intrauterine infection of a non-immune pregnant cow by bovine viral diarrhea virus, based on when infection occurs during pregnancy.

In addition, when infection occurs before the 125th day of pregnancy, the surviving fetus suffers persistent infection (PI) and remains immunotolerant, meaning that its immune system does not recognize the virus as a foreign organism and does not fight against it. Such a calf subsequently becomes the main source of infection for other animals in the herd, because it sheds large amounts of virus into the environment. Finally, infections
after the 125th day of pregnancy are overcome subclinically by the fetus, with no long-term consequences.

Akabane virus (AKAV) of the genus Orthobunyavirus and family Bunyaviridae does not produce disease in adults. However, depending on the fetal period of infection, \textit{in utero} infections can result in abortion, premature birth, stillbirth, and congenital defects such as microencephaly, arthrogryposis (when infection occurs between 104 and 173 days of pregnancy), hydranencephaly (infection between 76 and 104 days), and poliomyelitis (infection after the 173rd day of pregnancy).

Some strains of the Blue tongue virus (BTV) (genus Orbivirus and family Reoviridae) cause \textit{in utero} infection that can result in early fetal death and resorption, stillbirth, and birth of weak animals. When infection occurs between 60-120 days of pregnancy, it can lead to congenital defects such as hydranencephaly, porencephaly, blindness, ataxia and arthrogryposis.

Bibliography

8. Avery ME, Mead J. (1959) Surface properties in relation to atelectasis and hyaline membrane disease. \textit{J Dis Child}; 97:517. [This is a study reporting on important aspects ofatelectasis in newborns].

©Encyclopedia of Life Support Systems (EOLSS)

33. Crouch CF, Oliver S, Francis MJ. (2001) Serological, colostral and milk responses of cows vaccinated with a single dose of a combined vaccine against rotavirus, coronavirus and E. coli F5 (K99). Vet Rec; 149: 105-8. [This text presents a study on vaccinations protocols of the cow and calf health].

40. Ellis JA, Hassar LE, Cortese VS, Morley PS. (1996) Effects of perinatal vaccination on humoral and cellular immune response in cows and young calves. *J Am Vet Assoc*; 208:393-399. [This paper presents approaches to the vaccination of young calves].

44. Ferguson JG, Dehghani S, Petrali EH. (1990) Fractures of the femur in newborn calves *Can Vet J*; 31: 289-291. [This paper covers the subject of femur fractures in depth].

49. Franklin ST, Amaral-Phillips DM, Jackson JA, Campbell AA. (2003) Health and performance of Holstein calves that suckled or were hand-fed colostrum and were fed one of three physical forms of starter. *J Dairy Sci*; 86: 2145-53. [This is a study reporting on important aspects of colostrum management].

51. Gareis A. (2003) Die Bedeutung von Glukosezusatz zur Infusionslösung bei Kälbern mit Neugeborendiarrhoe [Significance of glucose additions to infusions in calves with neonatal diarrhea] [thesis]. Munich: University of Munich; [in German]. [This study presents different treatmen protocols for diarrheic calves].

53. Gay CC. (1983) Failure of passive transfer of colostral immunoglobins and neonatal disease in calves: a review. Proceedings of the 4th international Symposium on neonatal Diarrhoea, Veterinary infectious disease Organization (VIDO), Saskatoon, Saskatchewan, Canada , 346-364 pp. [This study reporting on important aspects of colostrum management].

57. Gregory NG. (2003) Effect of enhancing curd formation during the first colostrum feed on absorption of gamma-glutamyl transferase by newborn calves. Aust Vet J; 81: 549-52. [This is a study reporting on important aspects of colostrum absorption].

63. Halliwell REW, Gorman NT. (1989) Veterinary clinical immunology. Philadelphia, WB Saunders , 194-205 pp. [This study presents background information allowing the reader to gain a relatively complete picture about the immune system of the fetuses].

64. Hawser Man Knob MD, Wroth JA. (1986) Variation of neutrophil function with age in calves. Am J Vet Res; 47: 152. [This paper presents approaches to the study of immune functions in calves].

©Encyclopedia of Life Support Systems (EOLSS)

73. Kotas RV. (1979) Surface tension forces and liquid balance in the lung. In: Thibeault PW, Gregory GA (eds.). Neonatal Pulmonary Care. California, Menlo Park, Addison-Wesley Publishing. 134-140 pp. [This is a study reporting on important aspects of the pathogenesis of RDSN in newborns].

85. McGuirk SM, Peek SF. (2004) What’s new in calf management? The top 10 things to do well. Proc of IX international congress of bovine medicine (ANEMBE); 2004 may 26-29; Gijón-Asturias, Spain. 73-78 pp. [This paper presents approaches to practice management of bovine colostrum and calves].

98. Osterstock JB, Callan RJ, Van Metre DC. (2003) Evaluation of dry cow vaccination with a killed viral vaccine on post-colostral antibody titers in calves. Proc of Am Assoc Bovine Practi.. Columbus,163–164 pp. [This text presents a study on vaccinations protocols of the cow and calf health].

100. Park YH, Fox LK, Hamilton MJ, Davis WC. (1992) Bovine mononuclear leukocyte subpopulations in peripheral blood and mammary gland secretions during lactation. J. Dairy Sci; 75:998-1006. [This text presents approaches to colostrum and milk immunological composition].

102. Patt JA. (1977) Factors affecting the duration of intestinal permeability to macromolecules in newborn animals. Biol Rev; 54; 411-29. [This is study reporting on factors affecting colostrum quality].

©Encyclopedia of Life Support Systems (EOLSS)

115. Reynolds EOF, Roberton NRC, Wigglesworth JS. (1968) Hyaline Membrana Disease, Respiratory Distress, and Surfactant Deficiency. *Pediatrics*; 42:758-768. [This is a study reporting on important aspects of RDSN in newborns].

©Encyclopedia of Life Support Systems (EOLSS)

121. Roy JHB. (1990) The calf. Vol I. Management of Health. 5th ed London, Butterworths. [This is a very important text reporting in depth on the bovine colostrum management].

130. Smith KL, Schanbacher EL. (1973) Hormone induced lactation in the bovine. 1 Lactational performance following injections of 17β-oestradiol and progesterone. J Dairy Sci; 56:738-743. [This paper presents approaches to the study of the milk production in the udder].

144. Troedsson MHT, Madill S. (2004) Pathophysiology of the reproductive System. In: Dunlop RH, Malbert ChH (eds.). Veterinary pathophysiology. Ames (Iowa), Blackwell. 213-258 pp. [This text presents background information allowing the reader to gain a complete picture about the pathphysiology in the mammary gland].

152. Uystepruyst CH, Coghe J, Dorts TH, Harmegniesa N, Delsemmeb MH, Arta T and Lekeux P. (2002a) Sternal recumbence or suspension by the hind legs immediately after delivery improves
respiratory and metabolic adaptation to extra uterine life in newborn calves delivered by caesarean section. Vet Res; 33: 709–24. [The study presents important approaches to the metabolic adaptation of the newborn calves].

Biographical Sketches

Susana Astiz is a recognized bovine veterinarian scientist specialized in bovine medicine and reproduction. She studied Veterinary Medicine in Madrid, became Master in Health Sciences in Barcelona, Spain and obtained the PhD degree from the Tierärztliche Hochschule in Hannover, Germany. She worked for several years as practitioner in Germany and Spain (with specialization in bovine medicine and reproduction), and as technical manager of ruminants for pharmaceutical companies (Schering Plough and Pfizer AH). She is Diplomat of the European Colleague of Herd Health Management (E.C.B.H.M.) and co-editor of the Spanish Association of Bovine Practitioners (A.N.E.M.B.E.) bulletin. In the present she is researcher at the Department of Animal Reproduction of the National Institute of Agricultural and Food Research (INIA) in Madrid, Spain.

Laura Elvira Partida is practitioner veterinarian, specialized in mastitis, milk quality, and calf rearing. She has consultancy experience, being member of Spanish and European Mastitis Groups, and has published articles, chapters and books in this area. She collaborates in practical teaching for the Animal Medicine and Surgery Department of the Veterinary Faculty of Madrid, Spain (U.C.M.). She is also co-editor of the Spanish Association of Bovine Practitioners (A.N.E.M.B.E.) bulletin.

Antonio González-Bulnes is senior researcher at the Department of Animal Reproduction of the National Institute of Agricultural and Food Research (INIA) in Madrid, Spain. His lines of research are Reproductive Physiology and Technology and Molecular Imaging. He has a large experience in the scientific field as researcher in veterinary reproduction and has worked with several animal species (ovine, caprine, bovine, swine and mouse, among others). He has directed several important research projects with national and international funding. He has more than 100 scientific articles published at the most relevant journals, has been invited as speaker in several national and international conferences, works as referee for numerous journals, as scientific consultant for several institutions, and teaches in numerous universities as collaborating professor.

Natividad Pérez Villalobos is veterinarian, specialized in bovine medicine and reproduction. She has consultancy experience, and is veterinary collaborator in practical teaching for the Animal Medicine and Surgery Department of the Veterinary Faculty of Madrid, Spain (U.C.M.). She has published articles, chapters and books related to bovine medicine. She also collaborates in the bulletin of the Spanish Association of Bovine Practitioners (A.N.E.M.B.E.).

Manuel Cerviño López obtained his Veterinary Degree at the Veterinary Faculty of Madrid (Madrid Complutense University), and obtained his Ph.D. in Veterinary Medicine at the same faculty. He started his professional career as bovine practitioner, worked in nutritional companies as ruminant specialist and finally worked as technical manager in Schering-Plough S.A. in Spain for 13 years. In the present he is the Technical Manager of ruminants in Boehringer-Ingelheim, Spain. He is the author or co-author of several books on bovine pathology, has numerous communications, technical and scientific publications.

Juan Vicente González Martin, an acknowledged veterinary surgeon with a large experience in internal medicine and herd health in bovine. He has dilated clinical and consultancy experience, as well as in bovine research. He is professor of the Department for Animal Medicine and Surgery of the Veterinary Faculty of Madrid, Spain (U.C.M.) for more than 20 years. Additionally, he is member of the board of the Spanish Association of Bovine Practitioners (A.N.E.M.B.E.) and Diplomat of the European Colleague of Herd Health Management (E.C.B.H.M.). He has published numerous articles, chapters and books related with bovine medicine and management, and is frequently invited as speaker to national and international buiatrics events. He is also co-editor of the Spanish A.N.E.M.B.E. bulletin.