PLANT BASED SOURCES OF PROTEINS AND AMINO ACIDS IN RELATION TO HUMAN HEALTH

Millward, D. J.
Director, Centre for Nutrition and Food Safety, University of Surrey, Guildford, Surrey, UK

Keywords: Dietary proteins, plant foods, cereals, legumes, digestibility, biological value, amino acid requirements, vegetarianism, meat, developing countries, children, chronic diseases, cardiovascular disease, cancer, phytoestrogens

Contents

1. Introduction
2. Protein Quantity
 2.1. Digestibility
 2.2. Amino Acid Composition and Biological Value
3. Difficulties in Defining Amino Acid Requirements and Protein Scoring Patterns
 3.1. Identification of a Scoring Pattern for Protein Quality Evaluation
4. Adequacy of Plant Based Diets in Developing Countries for Children
5. Health Implications of Plant Protein Diets
 5.1. Are Their Benefits from Lower Intakes of Indispensable Amino Acids of Plant Based Diets?
 5.2. Are There Benefits from Lower Protein Intakes of Plant Based Diets?
 5.3. Increased Delivery of Nitrogen to the Lower Gut from Poorly Digested Plant Proteins
 5.4. Influences of Specific Peptide Sequences of Plant Proteins
 5.5. Presence of Phytoprotectant Factors
6. Conclusions
Glossary
Bibliography
Biographical Sketch

Summary

Plant proteins in the human diet include a diverse range, which vary in terms of amino acid composition and digestibility. They are perfectly capable of satisfying human needs for all ages when consumed in appropriate mixtures. However, monotonous diets based on unsupplemented cereals, and especially some root crops, may be inadequate sources of indispensable amino acids, especially for children. While protein quantity is not an issue, digestibility is a problem for some cereals and is generally poorly understood. The adequacy of most common plant protein sources for children is discussed. Calculation of an amino acid score is problematic because of the lack of agreement on reference amino acid requirement patterns. New maintenance and age-related amino acid requirements pattern have been suggested which appear valid when used to score plant proteins, indicating values similar to, or less than, the biological value measured directly in young children. When used to score plant-based diets in India, no marked deficiencies are identified for adults, whilst for children deficiencies are only
identifiable in very young children and these are relatively minor. Thus inadequate amino acid supply is unlikely to be an issue with most cereal-based diets.

The health implications of plant protein diets is difficult to assess in relation to the proteins per se because of the general benefit of diets rich in cereals, fruit and vegetables, but several potential factors have been proposed. These include metabolic responses to a lower essential amino acid and lower overall protein intake, but newly emerging epidemiological data is challenging the view that low protein plant-based diets are beneficial, with data that high protein intakes reduce risk of cardiovascular disease, hypertension and osteoporosis.

However, with increased plasma IGF-1 bioactivity, a major risk factor for hormone sensitive cancers, and with dietary protein intake a determinant of plasma IGF-1 levels, the health implication of the level of dietary protein is difficult to resolve. It is most likely that phytoprotectant factors associated with plant protein sources, especially the isoflavones in soya, can reduce the risk of chronic disease, although little is known about the detailed mechanisms.

1. Introduction

Of the several thousand plant species that are assumed to have contributed to the human diet in the past, and the 150 species that have been cultivated for commercial purposes, most of the world's population depends on only about 20 different plant crops. These plant protein sources provide 65% of the world supply of edible protein and are generally divided into cereals, legumes and other vegetables, fruits and nuts, with cereal grains providing almost half (47%) of world protein supplies. Plant protein sources in the developed countries constitute only about a third of intake: i.e., 31% of protein intake in the US diet and 36% in the UK, but are the major source (about 80%) in the developing countries, of which cereals predominate (see Table 1). Of these wheat, (43%), rice, (39%) and maize, (12%) account for the main part. Plant protein sources can differ from animal sources in terms of digestibility, amino acid composition, the presence of anti-nutritional factors which adversely influence digestibility and safety and of phytoprotectant factors (such as antioxidants, phytoestrogens, etc.), which may be advantageous by mediating disease protection. Due to this latter factor, together with the current guidelines to reduce animal fat and limit meat intakes, an increased consumption of plant food sources (fruit and vegetables, bread, cereals and potatoes) has been universally proposed as part of the Healthy Diet.

Although it is frequently pointed out that plants can provide all of human protein needs, it is nevertheless the case that the misconception persists that they are nutritionally inferior to animal proteins. This is because of both complex social and cultural attitudes towards meat and because of the scientific tradition of protein quality evaluation in animals. In fact, the important nutritional question is not whether plant proteins can completely provide for human amino acid needs, since this has been established for all ages. Rather, the question is whether this is an easy task in practice, i.e., achievable with relatively unsupplemented, low-cost cereal or other staple diets available to poor developing communities or only possible with the much higher cost, carefully selected mixed diets consumed by affluent vegetarians.
Protein sources

<table>
<thead>
<tr>
<th>Country</th>
<th>Protein P:E ratio</th>
<th>Animal</th>
<th>Cereal</th>
<th>Pulse/soya</th>
<th>Rest</th>
<th>Lysine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g d⁻¹ % energy</td>
<td>g d⁻¹ %</td>
<td>g d⁻¹ %</td>
<td>g d⁻¹</td>
<td>g d⁻¹</td>
<td>mg d⁻¹</td>
</tr>
<tr>
<td>Food balance sheets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>113 12.1</td>
<td>73.5 65.0</td>
<td>24.6 21.8</td>
<td>2.0 12.9</td>
<td>7598</td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>91 11.0</td>
<td>52.3 57.5</td>
<td>22.9 25.2</td>
<td>2.3 13.5</td>
<td>5815</td>
<td></td>
</tr>
<tr>
<td>Tunisia</td>
<td>91 10.9</td>
<td>19.0 20.9</td>
<td>55.6 61.2</td>
<td>6.0 10.3</td>
<td>3911</td>
<td></td>
</tr>
<tr>
<td>Egypt</td>
<td>87 9.4</td>
<td>12.9 14.8</td>
<td>59.6 68.3</td>
<td>5.8 9.0</td>
<td>3502</td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>66 9.3</td>
<td>27.1 41.1</td>
<td>22.6 34.3</td>
<td>10.4 5.8</td>
<td>3918</td>
<td></td>
</tr>
<tr>
<td>Nepal</td>
<td>50 10.2</td>
<td>7.3 14.6</td>
<td>34.8 69.5</td>
<td>3.4 4.6</td>
<td>2132</td>
<td></td>
</tr>
<tr>
<td>Bangladesh</td>
<td>43 8.4</td>
<td>4.8 11.3</td>
<td>33.4 78.6</td>
<td>2.6 1.7</td>
<td>1883</td>
<td></td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>34 8.0</td>
<td>6.9 20.3</td>
<td>17.0 50.0</td>
<td>4.6 5.5</td>
<td>1741</td>
<td></td>
</tr>
<tr>
<td>Food intake data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK omnivores</td>
<td>74 14.2</td>
<td>44.1 59.4</td>
<td>17.3 23.3</td>
<td>7.0 5.9</td>
<td>4824</td>
<td></td>
</tr>
<tr>
<td>UK vegetarians</td>
<td>54 12.7</td>
<td>18.1 33.6</td>
<td>18.7 34.8</td>
<td>9.4 7.6</td>
<td>2871</td>
<td></td>
</tr>
<tr>
<td>India (mean)</td>
<td>62 11.1</td>
<td>3.4 5.5</td>
<td>47.8 76.7</td>
<td>7.3 3.8</td>
<td>2413</td>
<td></td>
</tr>
<tr>
<td>Tamil Nadhu</td>
<td>46 9.7</td>
<td>2.4 5.3</td>
<td>29.0 63.6</td>
<td>6.6 7.6</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>West Bengal</td>
<td>53 8.8</td>
<td>0.8 1.5</td>
<td>48.0 89.9</td>
<td>3.2 1.4</td>
<td>1869</td>
<td></td>
</tr>
</tbody>
</table>

Lysine requirements (at 65 kg body weight)

| FAO/WHO 1973 | 780 |
| FAO/WHO 1991 | 3770 |

Toronto Breakpoint studies:

| mean value | 2795 |
| Safe allowance | 4114 |

MIT scoring pattern

| 1950 |

Original N balance data recalculated

| 1209 |

Table 1. Protein and lysine content of diets in relation to estimates of the requirements.
2 Protein Quantity

Animal food sources are generally high protein, so that there is a clear relationship between protein intake and the proportion of animal foods, especially meat, in the diet. As shown in Table 1, the overall protein energy ratio of national food supply falls from 12.1% in the US to 8% in a Sub-Saharan African country, like Sierra Leone, as the animal protein intake falls from 74g d⁻¹ to 6.9g d⁻¹. In the UK, the P:E ratio falls from 14.2% in omnivores to 12.7% in the small number of vegetarians, (non meat eaters) identified in the UK food intake survey. Thus, protein intakes of vegetarians are likely to be closer to the RNI, and some 20-30% of this, albeit small, sample were below it.

Whether this is a problem is to some extent debatable, but probably unlikely especially in developed countries given the overall lower morbidity and mortality of vegetarians compared with meat eaters. Firstly with the adult protein requirement equivalent to a P:E ratio of about 9% and 7% for the Reference Nutrient Intake (RNI) and Estimated Average Requirement EAR, i.e., 0.75g and 0.6g protein kg⁻¹ in adults, (calculated assuming an energy requirement of 1.6* BMR), the lowest diets shown in Table 1 fall between the EAR and RNI for adults. Secondly, all of the values in Table 1, for protein as food supplies or intake, indicate P:E values higher than breast milk at 7%, since as shown in Table 2, only a few plant staples have a lower P:E ratio than this. Indeed, wheat and maize are “high protein foods” compared with breast milk if the energy density issue is ignored. Furthermore on the basis of a metabolic model for the protein requirement which includes a substantial adaptive component varying with intake (see below), there is by definition a correlation between intake and requirement, so that low intakes are unlikely to become associated with substantial prevalence rates of inadequacies until they fall close to the LRNI. Most importantly, at least as far as food supply data is concerned, wheat-based food supplies, such as Tunisia and Egypt with only 15-20% animal protein sources, clearly supply protein at levels close to that of predominantly animal based food supplies, as for the UK. This means that cereal based diets, especially those based on wheat, can supply protein at levels well above the human protein requirement. As for infants and children, the wide and successful use of soya based infant formula is proof that plant-based diets can be adequate for infants. On the other hand, the monotonous diets based on very low protein starchy root crops, such as cassava, may well supply inadequate protein intakes to ensure adequate height growth. In this context, it is interesting to note that in such cases, such as the stunted Bundi orphanage children described in the 1970s who were fed almost exclusively on the low protein starchy root Taro, stunting was the only observable symptom of any nutritional adequacy. They were otherwise healthy, without overt symptoms of Kwashiorkor, in support of the arguments that Kwashiorkor is not a protein-deficiency disease. The issue of whether stunting in children reflects inherent inadequacies of plant based diets as protein sources as opposed to other nutrient inadequacies is outside the scope of this paper, but as discussed below, it has been demonstrated that young children fed one of the hybrid varieties of maize (opaque-2(o₂), sugary-2(su₂) hybrid) (see Molecular Genetic Improvement of Protein Quality in Maize) as their sole protein and energy source (but with mineral and vitamin supplementation) grow in height and weight at rates similar to that achieved with casein. For these reasons, and with the nutritional adequacy question limited to the consideration of protein needs, then we can reasonably safely conclude that with the exception of some starchy roots, plant based
diets available in most parts of the world are capable of providing adequate protein for all ages. Thus, protein quantity is unlikely to be an issue and the main question of their nutritional adequacy as protein sources is limited to their quality, i.e., digestibility and biological value.

Bibliography

Friedman M. (1996) Nutritional value of proteins from different food sources. A review Journal of Agricultural & Food Chemistry 44, 6-29, [This is a comprehensive review of the nutritional value of a wide range of plant protein sources].

McCarty, M. F. (1999) Vegan proteins may reduce risk of cancer, obesity, and cardiovascular disease by promoting increased glucagon activity. Medical Hypotheses 53, 459-485. [This is a speculative review on how plant proteins could have health benefits].

Millward DJ. (1998a) Quality and utilization of plant proteins in human nutrition In Plant Proteins from European Crops: Food and non-Food Applications (J Gueguen & Y Popineau Eds) Springer-Verlag Berlin pp169-176 [This paper reviews how the nutritional value of plant proteins has been measured in human nutrition].

Millward DJ (1999a) The nutritional value of plant based diets in relation to human amino acid and protein requirements. Proceedings of the Nutrition Society 58, 249-260. [This paper includes a comprehensive review of the current views of human amino acid requirements, differences in essential amino acid content between plant and animal proteins and the nutritional value of plant compared with animal proteins in human nutrition].

[This paper includes a review of the influence of the level of protein in the diet on health, especially bone health, kidney function, fetal development and hypertension].

Pellett P.L (1996) World essential amino acid supply with special attention to South-East Asia. Food and Nutrition Bulletin 17, 204-234 [This paper includes a comprehensive review of the amino acid supplies and their adequacy].

Roegrant MW (1999) Alternative futures for world cereal and meat consumption. Proceedings of the Nutrition Society 58, 219-234 [This paper is an interesting account of the impact of changes in meat consumption in the developed world on poverty in the developing world].

Young, V.R. & Pellet, P.L., (1994) Plant proteins in relation to human protein and amino acid nutrition American Journal of Clinical Nutrition 59, 1203S-1212S [This paper reviews the differences in essential amino acid content between plant and animal proteins, and discusses the nutritional value of plant compared with animal proteins in human nutrition].

Biographical Sketch

D Joe Millward, B.Sc., Ph.D., D.Sc. is Professor of Nutrition and Director at the Centre for Nutrition and Food Safety at the University of Surrey in the UK. He trained as a biochemist, obtaining his initial degree and D Sc from the University of Wales, and PhD from the University of the West Indies. He worked for many years with John Waterlow, initially at the Medical Research Councils Tropical Metabolism Research Unit in Jamaica, and subsequently in the Department of Human Nutrition at the London School of Hygiene and Tropical Medicine, as Reader in Nutritional Biochemistry. He has taught nutrition and metabolism for over 25 years, at both undergraduate and post graduate level, and has recently initiated the first post-graduate course in Nutritional Medicine in the UK. His research has focused on a) the regulation of protein metabolism and turnover, and the metabolic basis of protein and amino acid requirements, b) the nature of the influences of dietary fat on chronic disease. He advises the FAO, and the WHO on protein requirements and protein quality. He is, or has been, an Editor of the American Journal of Physiology, the British Journal of Nutrition, Nutrition Research Reviews, and Clinical Science. Recent papers include Millward DJ (1999) Meat or wheat for the next millenium? Proc Nutr Soc 58, 209-210; Millward DJ (1999) The nutritional value of plant based diets in relation to human amino acid and protein requirements, Proc Nutr Soc 58, 249-260; Millward DJ (1999) Optimal intakes of dietary protein. Proc Nutr Soc 58, 403-413; Millward DJ et al. (2000) Human adult protein and amino acid requirements: [13C-1] leucine balance evaluation of the efficiency of utilization and apparent requirements for wheat protein and lysine compared with milk protein in healthy adults. Am J Clin Nutr. 72, 112-121.