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Summary 

 

Senescence is a terminal stage of plant development. It often, but not invariably, ends in 

the death of cells, tissues, organs or the whole plant. At the cell level there are a number 

of different senescence pathways, most of which are autolytic, that is, the genetic and 

biochemical events originate within the senescing cell itself. Nucleus, vacuole, plastids 

and mitochondria interact during cell senescence. Up to the point where organelle 

integrity is lost, some kinds of senescence may be halted, extended or even reversed by 

various treatments, but beyond this threshold there is a rapid decline in viability leading 

to death. Developmental cell senescence and death occur during differentiation of 

xylem, floral tissues, embryos and seeds. Leaves, fruits and some flowers lose 

chlorophyll during senescence as chloroplasts differentiate into pigmented plastids. The 

products of chlorophyll breakdown are deposited in the cell vacuole. Proteins and 

nucleic acids are hydrolysed and the nitrogen and phosphorus liberated are exported 

from the leaf to sink tissues. Fruit ripening shares a number of regulatory and 

biochemical features with leaf and flower senescence. Senescence contributes to root 

turnover, an important factor in global carbon balance. Plants and their parts often must 

attain maturity before they are able to respond to signals that induce senescence. Floral 

induction and seed formation stimulate senescence. In monocarpic species the entire 

plant undergoes reproductive death. Polycarpic plants flower repeatedly during their 

lifetimes, and show no clear relationship between senescence and longevity. Senescence 

is a strategic and tactical response to seasonal and unpredictable stresses, including 

changing daylength, flooding, drought, excessive light, darkness, nutrient limitation and 

disease. The timing of senescence in relation to carbon capture and nutrient 

remobilization is a major determinant of crop yield. Senescence and related processes 

account for significant postharvest losses and food wastage. 
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1. What is Plant Senescence? 

 

1.1. Terminology 

 

1.1.1. Senescence 

 

 
 

Figure 1. Senescence and related events in the life-history of a plant and its parts. The 

sequence of events is reiterated at all levels in the hierarchy of plant organization, from 

cells, tissues, and organs through to individual plants, communities, and even whole 

floras. Note that ageing includes, but is not limited or defined by, terminal senescence 

and death phases. 

 

Senescence, which is part of a cloud of terms referring generally to the process or 

condition of growing old, has a specialized meaning in plant biology (Figure 1). A 

Thesaurus search for ‗senescence‘ reveals words for maturity, ripeness, seniority and 

longevity, but the dominant associations are with notions of decay, decline, 

gerontology, morbidity and mortality. This reflects the etymological origin of the word 

(from Latin senescere to grow old) and its association with senility and the medical 

problems of human ageing. 

 

Current physiological understanding of the senescence condition and its positive roles in 

plant growth, differentiation, adaptation, survival and reproduction, supports a 

definition that acknowledges senescence to be a phase of development that follows the 

completion of growth, is absolutely dependent on cell viability and which may or may 

not be succeeded by death. 

 

1.1.2. Ageing 

 

Ageing (sometimes also spelled ‗aging‘) is another term, like senescence, that has 

become associated with deterioration. In the general biological context, however, it 

should be considered to refer to changes that occur with time, and therefore to embrace 
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the time-based processes of growth and differentiation as well as maturity and 

senescence. 

 

1.1.3. Death 

 

Death is a condition or state and is the culmination of, and separate from, the process of 

dying. The philosopher Ludwig Wittgenstein wrote ―Death is not an event in life‖. 

Application of the term ‗cell death‘ to the physiology of senescence, though 

widespread, seems inappropriate. By definition, changes that occur in dead cells are 

post-mortem and non-biological. Biologists studying terminal events in development 

need to distinguish between the regulated activity of viable biological structures and the 

pathological outcomes of organic collapse. 

 

1.1.4. Program 

 

The expressions ‗senescence program‘ and ‗programmed cell death‘ are extensively 

used. The idea of a program as applied to living systems has been taken from computer 

science. The purposeful nature of a particular biological process, such as senescence, is 

conceived to be the consequence of control by the equivalent of an executable machine 

routine: hormones and other signal molecules, kinases and transcription factors are 

activated in sequence, leading to physiological change. Senescence, like many events in 

the plant lifecycle, proceeds according to a timetable determined by developmental and 

environmental factors and mediated by a genetic program. 

 

1.2. Relationship between Senescence and Development 

 

Development is the general term for the changes in form brought about through growth 

and differentiation. Because post-mitotic expansion processes in plants are largely 

driven by water, growth is not necessarily associated with increase in dry mass. 

Differentiation is the change in structure and function that results in cell, tissue and 

organ specialization. The capacity to reverse the process of differentiation is a 

characteristic of the plastic nature of plant development. Senescence and development 

interact at different levels. Senescence is part of the program that specifies cell fate. It is 

triggered differentially in tissues and organs, resulting in complex anatomies and 

morphologies that change and adapt over time. It is the means by which resources are 

recycled from obsolete body parts to new developing structures. Finally variations on 

the senescence program theme have been shaped by evolution to give rise to a diversity 

of structures within the angiosperm lifecycle. 

 

1.3. Relationship between Senescence and Ageing 

 

As discussed in Section 1.1.2, the changes with time that fall under the general term 

ageing are not necessarily deteriorative, although in the long run errors will accumulate 

and living tissues will show signs of wear and tear. According to some proposed 

models, senescence is an accelerated form of ageing. Senescing organs, tissues and cells 

are built either to fail quickly or to be deficient in the mechanisms that otherwise defend 

against physiological decline. A related view is that, since ageing and eventual death are 

thermodynamically unavoidable, senescence has evolved as a developmental strategy 
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that pre-empts the inevitable, enabling the individual plant to control its own viability 

and integrity over the course of the lifecycle. This is sometimes called the Samurai Law 

of Biology (‗it is better to die than to be wrong‘). Such is the current state of knowledge 

that it is difficult to resolve the interconnections between ageing and senescence 

mechanisms, and they will continue to be fascinating areas of research and speculation. 

 

1.4. Relationship between Senescence and Death 

 

Senescence and death differ fundamentally: by definition, senescing tissue is viable, 

dead tissue is not. There is a transitional condition between the two states during which 

metabolism modulates into abiotic chemistry. This terminal period is often rapid and 

always irreversible. The preceding senescence phase is usually comparatively extended. 

Cell membranes and organelles remain intact, and organs stay turgid. In some cases, 

notably the senescence of green (mesophyll) cells in leaves, this phase is reversible until 

almost all of the cells‘ macromolecules have been recycled and exported to the rest of 

the plant. Cells within the same organ can be at different stages in the progression from 

senescence to death. For example there is a gradient of cell age from leaf base to tip in 

grass species such as maize (Zea mays; Figure 2). Senescence proceeds from the tip 

downward, and towards the veins from interveinal regions of the lamina. This 

heterogeneity within a single structure can make it difficult to disentangle senescence-

phase, terminal and post-mortem events. 

 

 
 

Figure 2. Leaf senescence in maize (Zea mays). The plant on the left (A) is growing on 

low levels of nitrogen fertilizer and shows the typical gradient of yellowing within and 

between leaves. The plant on the right (B) has been genetically modified to reduce 

expression of a gene encoding an enzyme of nitrogen mobilization in senescence. 
 

2. Senescence of Cells and Tissues 
 

2.1. Mechanisms of Cell Senescence 
 

2.1.1. The Growth Curve 

 

Senescence of tissues, organs and individuals is an expression of processes going on at 

the cell level. In terms of comparative biology, a cell is a cell is a cell and senescence 
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may be expected to figure amongst the common features of structure and physiology. 

The basic characteristics of cell growth and proliferation are shared across the taxa. 

Senescence is properly recognized as a normal and even essential feature of the post-

mitotic phase of the cell life-cycle and is immediately preceded by (and sometimes 

partially overlaps with) the growth period (Figure 1). Typically the pattern of growth in 

biological systems is density-dependent, beginning slowly when cell mass is small, 

reaching a maximal rate when density is optimal with respect to metabolic and 

environmental constraints, declining as limiting external and internal factors become 

increasingly influential, and finally approaching maximal size asymptotically. Such 

sigmoidal behavior is usually described mathematically by some variation of the logistic 

equation. The generalized, archetypal logistic-type function is: 

 
tG y    

 

where mass or size, G , is related to time t  by three coefficients or groups of 

coefficients. y is always 
ce
 and represents exponential growth with a rate constant c . 

  is the value of G  at the asymptote, or a transformation of it, and β refers to the initial 

value or state of the system. To fit this kind of function is virtually impossible without 

computers, and even then it took until the late sixties to solve the problem of fitting the 

generalized logistic with statistical rigor. Nowadays anyone can do it with absolute 

confidence that the error estimates all conform to the laws of non-linear estimation. 
 

2.1.2. Senescence as a Normal Phase of Cell Lifespan 
 

Growth curves are of interest in the study of senescence because a cell population in the 

period of decline between the point of maximal growth rate and the stationary phase is 

sometimes regarded as ageing. The relationship between ageing and senescence is 

discussed in Section 1.3. It is characteristic of plants that the logistic-type pattern seen 

in cell cultures is observed at progressively higher levels of organization up to organ, 

individual and even beyond (Figure 1). It is reasonable to conjecture that intrinsic 

sigmoidicity, expressing the interplay between the potential for growth and the 

progressive imposition of limitations, is an important factor in triggering the senescence 

syndrome. It follows that the template for the development of any and every plant cell, 

from any and every tissue and organ, has a built-in senescence module attuned to the 

growth curve. The curves themselves will vary in their proportions, the onset and rate 

characteristics of their ageing phases will differ accordingly and so will the senescence 

response. For example cells of vascular tissue achieve full size and morphological 

maturity comparatively quickly, and programmed senescence followed by death of cell 

contents is completed soon after the growth asymptote is reached. On the other hand, 

there is evidence that the stomatal guard cells of some species do not initiate a 

recognisable senescence program until long after structural and functional maturity and 

may remain in the pre-senescent state when the leaf as a whole is senescent and shed. 
 

2.1.3 Autolysis during Cell Senescence 
 

Genetically programmed cell senescence is a form of suicide. Although there are 

instances of plant cells being killed by their neighbors, and a severe external stress can 

cause fatal trauma, in most cases the senescence process is autolytic; that is, cytoplasm 
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is both the source and the location of the degradative activities that ultimately bring 

about its own death (Figure 3). During autolysis, macromolecules are cleaved by lytic 

enzymes into oligomeric fragments and ultimately into monomers. As the location of 

peptidases, nucleases, peroxidases and other hydrolytic and oxidative enzymes, the 

vacuole has an essential function in most kinds of autolytic cell senescence. 

Macromolecules are either engulfed by, or transported across, the tonoplast (the 

bounding membrane of the vacuole) and degraded in the vacuolar space, or else the 

tonoplast ruptures, flooding the cytosol with lytic enzymes and rapidly killing the cell. 

Autolysis in plants takes a number of different forms, some of which are listed in Table 

1. 

 
 

Figure 3. Cytological features of three modes of programmed senescence of plant cells 

compared with the apoptotic pathway of animal cell death. (A) Hypersensitive cell 

death, a resistance response to pathogen attack. Condensation and cleavage of DNA in 

the nucleus precedes vacuole disruption and blebbing of tonoplast and plasma 

membranes; the process ends with destruction of organelles, plasma membrane collapse 

and leakage of the dead cell‘s contents. (B) Tracheary element differentiation, an 

example of developmental cell senescence and death. Swelling and rupture of the 

vacuole happens as the cell walls undergo secondary thickening and restructuring. 

Nuclear DNA fragmentation occurs in the later stages, after vacuolar collapse. Finally 

autolysis eliminates the remaining cytoplasm, leaving an empty cell enclosed by a 

thickened wall. (C) Mesophyll cell senescence, an example of transdifferentiation in 

which the change in plastid structure reflects the functional transition from provision of 

assimilated carbon to source of salvaged nitrogen and phosphorus. The senescence 

process is distinct from cell death and in some cases is reversible. (D) Apoptosis in 

animal cells. Chromatin condensation and fragmentation are early morphological 

events. The plasma membrane is disrupted and cell contents are repackaged into 

apoptotic bodies, which are finally engulfed by neighboring macrophage cells. 
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Type Of Cell 

Senescence 

Characteristics Discussed Further 

Autophagy A form of cell senescence 

characterized by the regulated 

assembly of specific lytic structures 

that break down cytoplasm under 

the control of signal cascades and 

differential gene expression. 

Autophagy also occurs in 

animals and is distinct from 

apoptosis. The mechanism 

is discussed in Section 

2.1.5. 

Transdifferentiation Remodelling of structure and 

function of cytoplasmic organelles 

in post-mitotic cells. Only in the 

final stages is there loss of integrity 

and viability as lytic processes take 

control. 

Senescence of green cells of 

leaves or pigmented tissues 

of fruits. See Sections 3.1, 

3.3. 

Hypersensitivity A kind of cauterization or 

containment reaction to attempted 

infection by a pathogen. 

Related to some kinds of 

spontaneous lesion 

formation in mutants. 

Hypersensitivity is 

discussed in further detail in 

Section 5.3. 

Lysigeny The formation of glands, channels 

and secretory ducts by the 

disintegration of cytoplasm. 

Section 2.2. Air spaces 

formed in roots in response 

to low oxygen stress are 

lysigenous in origin. 

Schizogeny Senescence of schizogenous cells is 

a process of cell separation during 

which the middle lamella of the cell 

wall breaks down. 

Section 2.2. 

Altruism Self-sacrificial elimination of cells 

for the benefit of the whole plant. 

An example is corolla cell 

autolysis in fertilized 

flowers, which reduces 

competition with 

unfertilized blooms for the 

attention of pollinating 

insects. Section 3.2. 

Types of Animal Cell Death 

Apoptosis Type of programmed cell death 

characterized by blebbing, cell 

shrinkage, nuclear fragmentation, 

chromatin condensation DNA 

fragmentation. 

Section 2.1.4. 

Necrosis Traumatic cell death resulting from 

acute cellular injury. 

Non-physiological mortality 

of plant cells in response to 

trauma resembles necrosis 

in animals 

Table 1. Modes of autolytic cell senescence in plants. Apoptosis and necrosis, the two 

principal forms of cell death in animals, are listed for comparison. 
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Nucleases catalyse the hydrolysis of nucleic acids. They may be specific for RNA 

(ribonuclease, RNase) or for DNA (DNase) or they may be bifunctional, able to use 

either nucleic acid as a substrate. Exonucleases remove nucleotide monomers 

sequentially from the ends of the substrate molecule; endonucleases hydrolyse linkages 

between monomers within the polynucleotide chain. Proteins are hydrolyzed by 

peptidases (also called proteases or proteinases). Endopeptidases, which cleave internal 

peptide bonds in their protein substrates, are particularly important in cell senescence. 

Cysteine endopeptidases, so-called because each has a reactive cysteine residue in its 

catalytic centre, are active during plant senescence and animal cell death (apoptosis). 

Caspases, the cysteine proteases responsible for apoptosis, have little or no structural 

similarity to the functionally equivalent proteases of senescing plant cells. The latter are 

sometimes referred to as metacaspases and include a class of cysteine endopeptidase 

referred to as vacuolar processing enzymes (VPEs). Among other types of protease with 

roles in plant cell senescence are serine proteases, metalloproteases, ATP-dependent 

proteases and components of the ubiquitin/proteasome system (UbPS).  

- 

- 

- 
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