
UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

RANGE AND ANIMAL SCIENCES AND RESOURCES MANAGEMENT - Vol. I ‐ Rangeland Ecophysiology - Jenesio I. 
Kinyamario, Victor R. Squires 

©Encyclopedia of Life Support Systems (EOLSS) 

RANGELAND ECOPHYSIOLOGY 

Jenesio I. Kinyamario  
University of Nairobi, School of Biological Sciences, Nairobi, Kenya 
 
Victor R. Squires 
University of Adelaide, Australia 
 
Keywords: C3, C4, photosynthesis, water use efficiency, nitrogen, productivity, 
rangeland management, crassulacean acid metabolism (CAM), physiological processes, 
CO2 fixation, Leaf area index (LAI), photosynthetically active radiation (PAR) 
 
Contents   
 
1. Implications of plant physiological processes for rangeland ecosystems 
1.1. Plant Level Interactions 
1.2. Management Implications: 
2. Photosynthesis 
2.1. C3, C4 Pathways in Photosynthesis  
2.2. Crassulacean Acid Metabolism (CAM)  
3. Geographical and ecological distribution of different photosynthetic pathway plants 
4. Comparative analysis of photosynthetic pathways  
4.1. CO2 Compensation Point 
4.2. Light Saturation 
4.3. Light Compensation Point 
4.4. Temperature Optima 
4.5. Water Use Efficiency 
4.6. Nitrogen Use Efficiency 
4.7. Photorespiration 
5. Photosynthetic capacity, quantum yield, and productivity 
6. Implications for Rangeland Management 
6.1. Herbivory 
6.2. Carbohydrate Reserves 
6.3.  Drought and Overgrazing Combine to Cause Much Stress 
6. 4. Climate Change 
6.5. Invasive Species 
6.6. Fires 
7. Conclusions 
Glossary  
Bibliography  
Biographical Sketches 
 
Summary 
 
Plants fix radiant energy through fixation of carbon into biomass that is consumed by 
animals. Therefore, the rates of carbon fixation and factors that determine these rates 
will determine the number of grazers a rangeland can be able to optimally carry 
(carrying capacity). Environmental factors that determine bioproductivity rates are 
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basically those that determine rates of CO2 fixation through the process of 
photosynthesis and respiration. Other factors include grazing pressure (defoliation, 
trampling, nutrient cycling) precipitation, light, temperature, wind, soil parameters, and 
inter-specific and intra-specific plant competition. 
 
Photosynthesis is the driving force of plant growth and animal production and is 
dependent on the area and efficiency of green plant tissue. Photosynthesis is a 
photochemical process by which plants fix carbon dioxide by use of solar radiation into 
organic acids and ultimately to sugars. There are two parts to photosynthesis: The light 
reaction happens in the thylakoid membrane of the chloroplast and converts light 
energy to chemical energy and the dark reaction takes place in the stroma within the 
chloroplast, and converts CO2 to sugar. 
 
Plants with higher photosynthetic capacity end up with higher CO2 carbon gains and 
hence in dry matter accumulation (productivity). Productivity is dependent on the 
assimilatory capacity of the plant, the length of the growing season and the effects of 
environmental factors such as precipitation, temperature, radiation, soil fertility, etc. 
The dilemma for rangeland managers is to optimize photosynthesis on the one hand and 
still achieve efficient harvesting of the product on the other.  Management of rangelands 
requires that managers understand the defoliation resistance mechanisms within grass 
plants. 
 
1. Implications Of Plant Physiology For Rangeland Ecosystems 
 
Rangelands are important grazing ecosystems comprising of assemblages of plants and 
herbivores (see Rangeland communities: structure, function, and classification) and the 
physiological processes that go on within them are not well understood by the ranchers 
or herders who use them.  Plants fix radiant energy through fixation of carbon into 
biomass that is consumed by animals. Therefore, the rates of carbon fixation and factors 
that determine these rates will determine the number of grazers a rangeland can be able 
to optimally carry (carrying capacity). Environmental factors that determine 
bioproductivity rates are basically those that determine rates of CO2 fixation through the 
process of photosynthesis (see below) and respiration. Other factors include grazing 
pressure (defoliation, trampling, nutrient cycling) precipitation, light, temperature, wind, 
soil parameters, and inter-specific and intra-specific plant competition. 
 
1.1. Plant Level Interactions 
 
Plants interact at several levels; individual and close neighbors. At the individual level 
this interaction is among different leaves at different leaf layers that may induce leaf 
shading. This is determined by the leaf area index (LAI) of the plant. Close neighbors 
have the strongest interactions towards each other. It has been demonstrated that as 
radiant energy passes through a dense sward, it gets diminished exponentially towards 
the lower sward levels near the ground surface depending on the LAI of the sward. This 
is both in quality and quantity, called light attenuation and follows the Beer-Lambert 
law. Therefore leaves in the top of the canopy will receive more energy and of better 
quality than the lower canopy levels leaves. The radiant energy useful in photosynthesis 
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is in the spectral range of 380 – 710 nm (called photosynthetically active radiation 
(PAR) often referred as 400 – 700 nm, PAR).  
 
The canopy photosynthesis of crops and natural communities will be determined largely 
by the product of their average PAR and their LAI. Therefore the gross productivity of 
the community will be equal to the integrated value of canopy photosynthesis 
throughout the growing season.  There is a linear relationship between canopy 
photosynthesis and light interception whereby early in the growing season or after 
defoliation by herbivory, light interception is closely related to the available LAI and 
crop growth and dry matter production will be proportional to the rate of light 
absorption (Monteith, 1981). This is attributable to the rapid increase in canopy 
photosynthesis as a result of increasing leaf area index until the eventual canopy closure 
later occurs. After canopy closure, there is no longer linear relationship between light 
interception and available leaf area that will strictly follow Beer-Lambert extinction law 
due to mutual shading although this may not limit overall stand productivity.  
 

-  
z o   exp  k LAII I=  

 
where, zI  = light received at a given canopy depth; oI = incident light received at top of 
plant canopy; k = extinction coefficient specific to the plant community, LAI = 
cumulative leaf area index above the level at which zI  is estimated, the cumulative 
LAI .  
 
More photosynthesis will tend to occur in the top canopy layers and diminish with the 
depth of the canopy. Due to shading photosynthetic activity of grasses were shown to 
reduce by about 50% in the middle canopy leaves and about 70% in bottom canopy 
leaves of a grassland range in Kenya.  

 
 

Figure 1. Distribution of leaf area index (LAI) in relation to height above ground within 
a grassland canopy in the Nairobi National Park, Kenya (Data: J.I. Kinyamario 

unpublished) 
 

Competition among and between different individuals for various environmental 
requirements will determine the kind of community that results in a particular rangeland 
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ecosystem. Competition for light is usually experienced in any typical plant community 
but is less of a problem in semi arid rangelands where the nearest neighbor distance is 
usually much wider.  

 

 
 

Figure 2. Mean solar energy (MJ m-2 d-1) received at various canopy levels in various 
months of the growing season (1985) at grassland sward in the Nairobi National Park 

(Data: J.I. Kinyamario unpublished) 
 
1.2. Management Implications: 
 
1. Plant type selection (C3 vs C4, species and cultivars) affects seasonal production 
profile  
2. Defoliation intensity (number of animals for how long) affects light capturing 
capacity (of the plant) 
 
2. Photosynthesis 

Photosynthesis is the driving force of plant growth and animal production and is 
dependent on the area and efficiency of green plant tissue. Photosynthesis is a 
photochemical process by which plants fix carbon dioxide by use of solar radiation into 
organic acids and ultimately to sugars.  
 
The sugar contains the stored energy and serves as the raw material from which other 
compounds are made. It occurs in the presence of water, solar energy and plant 
chlorophyll molecules that must trap the solar energy to allow the process to take place. 
This process, which takes place inside chloroplasts, involves important and specific 
enzymes. The process of photosynthesis can be simplified as follows: 
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Solar Energy
2 2 2 2 2ChlorophyllCO  + 2H O (CH O)  + H O +On⎯⎯⎯⎯→  

 
Photosynthesis follows a rather well understood pathway among plants. During the 
process, the water molecule is split into protons and electrons are released that drive the 
process.  
 
There are two parts to photosynthesis: The light reaction happens in the thylakoid 
membrane of the chloroplast and converts light energy to chemical energy. This 
chemical reaction must, therefore, take place in the light. Chlorophyll and several other 
pigments such as beta-carotene are organized in clusters in the thylakoid membrane and 
are involved in the light reaction. Each of these differently-colored pigments can absorb 
a slightly different color of light and pass its energy to the central chlorophyll molecule 
to do photosynthesis. The central part of the chemical structure of a chlorophyll 
molecule is a porphyrin ring, which consists of several fused rings of carbon and 
nitrogen with a magnesium ion in the centre. The dark reaction takes place in the 
stroma within the chloroplast, and converts CO2 to sugar. This reaction doesn't directly 
need light in order to occur, but it does need the products of the light reaction (ATP and 
another chemical called NADPH). The dark reaction involves the Calvin cycle in which 
CO2 and energy from ATP are used to form sugar. Actually, notice that the first product 
of photosynthesis is a three-carbon compound called glyceraldehyde 3-phosphate. 
Almost immediately, two of these join to form a glucose molecule. 
 
The energy generated in the form of ATP during phosphorylation is used together with 
the reducing power (NADPH2) gained during the reaction to reduce CO2 to 
carbohydrates with a higher energy value. This process takes place in the stroma of 
chloroplasts. Some plants are known to fix carbon dioxide resulting into either three or 
four carbon stable products. Hence, plants are divided into two major groups in terms of 
these pathways, namely C3 or C4 plants.  
 
- 
- 
- 
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