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Summary 
 
Chemically mature soils are the result of a long and complex genesis. A large set of 
soil-forming processes, as well as erosional and accretional processes, contribute to the 
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transformation of silicate bedrocks into such soils. The depth of weathering is related to 
time, although the impact of soil forming processes has fluctuated widely through time 
in relation with climate variations. Chemically mature soils, termed laterites by 
geologists, occur mainly on stable Gondwanean cratons. 
 
The transformations begin with bedrock weathering, i.e., hydrolysis of all silicates, of 
which the main end products, depending on the soil drainage, are alumina, e.g., gibbsite, 
or clays, the most common being kaolinite. At this stage, the bedrock texture is 
preserved. During the next stage, the rock texture disappears while secondary minerals 
and resistant residual primary minerals are incorporated into the soil matrix, in a process 
named pedoplasmation, factors of which are groundwater action, faunal burrowing, and 
clay illuviation. Low redox groundwaters played an important role in these soils, 
creating a thick hydromorphic horizon (the mottled clays), while iron oxides are 
concentrated in the zone of fluctuation of groundwater in the form of nodular horizons 
or iron crusts (ferricretes). Mobile groundwater eluviates (micro-erodes, transports, and 
sorts particles and grains) in the mottled clays and to a lesser extent in iron crusts. 
 
Subsurface horizons; oxic, kandic, and, to a lesser extent, argillic horizons; usually have 
the same mineralogical composition as the weathered bedrock, but are considerably 
enriched in sesquioxides. The genesis of oxic and kandic horizons is not yet fully 
deciphered. Presently, the functioning of these horizons is dominated by the soil biota. 
 
Through time, groundwater has moved up and down in relation to cyclical variations in 
precipitation, leading to alternate aggradation and degradation of iron oxides. The up-
and-down movements of the groundwater were interrupted at certain points by erosional 
phases during which ferruginous nodules were transported on slopes while 
allochthonous materials, basically aeolian, were also added to these soils during certain 
periods. 
 
Chemically mature and derived soils are affected by severe constraints for modern 
agriculture, i.e., very low chemical fertility; moreover these soils are frequently 
characterized either by waterlogging, or by a low water-holding capacity—and in the 
case of some soils, by both. They are also very sensitive to degradation when modern 
techniques are applied without caution, causing erosion, hard setting, and soil biota 
degeneration. Poorly controlled irrigation can lead to a rise in the ground water table, 
which will induce salinization or alkalinization. In the past, most of these soils were to 
be found under virgin forest while only a few were cultivated, either by a system of 
long-term fallow, or with cultivated plants growing under a forest canopy. Both systems 
were undoubtedly sustainable. New systems of sustainable cultivation of such soils 
(e.g., no tillage) are presently being experimented with. 
 
1. Introduction 
 
As soon as continents were formed at the very beginning of Earth's development, long 
before life appeared, surface rocks began to be transformed into secondary products, 
basically clays, as a consequence of rainfall. Later, when life appeared on the emerged 
lands, an ecosystem developed in these secondary products leading to the formation of 
soil profiles. At present, thick, chemically mature, complex, ancient soils (also named 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

EARTH SYSTEM: HISTORY AND NATURAL VARIABILITY - Vol. II - Weathering and Development of Chemically Mature 
Soils - Nicolas Fedoroff 

©Encyclopedia of Life Support Systems (EOLSS) 

laterites) formed by long-term chemical weathering of crustal bedrock cover over one 
third of all emerged lands, principally on cratons belonging to the Gondwana 
megacontinent. 
 
From a scientific viewpoint, the chemically mature soils must serve for the long term as 
a sensitive environmental sensor at the interfaces of atmosphere, biosphere, and 
lithosphere on continents. The concentrations of sesquioxides that are very common in 
these soils provide surface geochemists and paleoclimatologists with very valuable, 
unique information on the past environments of continents. 
 
Chemically mature soils are mainly located in the tropics, some in the subtropics. 
Before the recent human exponential expansion, these soils were covered by virgin 
rainforests and savanna. Native communities cultivated only restricted surfaces using 
the very conservative system of slash and burn followed by a long-term fallow (30–40 
y). Nowadays, most of the rainforests and savanna have been definitively cleared. After 
clearance, unadapted techniques of plowing and cultivation have most commonly been 
applied, as in Brazil. Consequently, wide areas of chemically mature soils are 
irremediably lost since all these soils when cleared are in danger of an irreversible loss 
of fertility by erosion, compaction, degradation of the soil ecosystem, and nutrient 
lixiviation. Agronomists are presently working in Australia, Brazil, and India on 
sustainable systems of cultivation that grant high yields with conservative practices. To 
achieve their tasks, they need basic knowledge of the genesis and the functioning of 
these soils. For instance, in the Sahel, erosion due to natural processes that occurred in 
the geological past has to be clearly separated from recent human-induced erosion. 
 
These soils also serve as mineral sources, predominantly of aluminum, but also of 
nickel, cobalt, manganese, gold, and palladium (e.g., the soils of the Yilgarn craton in 
Western Australia). Mining soils that bear useful elements destroys the soil cover, 
produces large amounts of waste, and generates pollution such as mercury pollution in 
the mining of gold. 
 
Chemically mature soils have been investigated on the one hand by mining geologists, 
whose research has mainly been devoted to the lower part of these soils where mineable 
elements are located, and on the other hand by soil scientists who have thoroughly 
studied their upper part because of their important fertility constraints. This chapter is an 
attempt to combine both viewpoints in order to explain the genesis of these soils and the 
evolution of related soil covers. 
 
2. Morphology and Classification of Chemically Mature Soils 
 
Chemically mature soils that developed upon the igneous, metamorphic, or volcanic 
bedrock of Gondwanean cratons consist of two main compartments, the alterite in 
which the bedrock texture is preserved, and the soil profile characterized by various soil 
matrices and horizons (see Figure 1). 

 
2.1. Alterites 
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The alterite begins with a front of weathering, which is very irregular—the bedrock 
becomes divided into unweathered volumes of various sizes and shapes which are 
isolated from their neighbors by weathered material. The partly weathered bedrock is 
commonly thin on Gondwanean cratons, but thick in midlatitudes. 
 
The alterite then consists of a thick isoalterite (from a few to some tenths of meters) in 
which the bedrock texture is preserved (Figure 3), but all common primary minerals are 
completely transformed into secondary ones, except quartz (which is partly altered: 
Figure 4) and very resistant minerals such as zircon and rutile. The bulk density 
decreases upwards due to a porosity increase. 

 
Then, progressively or abruptly, the isoalterite is either replaced by an alloterite in 
which the bedrock texture is no longer perceptible, or overlaid by soil horizons. 
 
Morphological diversity of alterites depends on bedrock composition, a possible 
hypogene (hydrothermal) weathering prior to the supergene weathering, the duration of 
exposure, and geographic location. 
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Figure 1. Schematic profile of a typical chemically mature soil (laterite) 
 

The integration of isalteritic materials into the soil matrix, called pedoplasmation, is the 
result of various processes (e.g., groundwater eluviation) clay illuviation (Figure 5), or 
faunal activity, which in the end produces a homogeneous soil matrix. 
 
Alterites have not been taken into account by soil classifiers who consider them merely 
as a parental material. They can be classified according to the nature of the parental 
bedrock, the degree of weathering, or the number and type of weathering phases 
present. 
 
2.2. Chemically Mature Soils: Diagnostic Horizons and Characters 
 
A large variety of soil profiles exist, either overlying alterites, or developed on pedo-
sediments, which originate from alterites or chemically mature horizons. However, in 
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these profiles, only a restricted number of diagnostic horizons and characters have been 
recognized. Chemically mature soil profiles result from various combinations of these 
diagnostic horizons and characters (Figure 2) which are as follows: 
 
Concentrations of sesquioxides (goethite, hematite, and magnetite, as well as gibbsite 
and boehmite and oxides of manganese and titanium) are undoubtedly the main 
character of the soil compartment of chemically mature soils (e.g., Figure 2.1 through 
2.5). 
 
The US Soil Taxonomy considers only three diagnostic characters which are supposed 
to function at present: (a) aquic conditions identified in the field by initial sesquioxide 
aggradations (see Soils) (e.g., ferruginous coatings, root pseudomorphs, mottles, and 
depletions (bleached zones)); (b) plinthite (from Greek plinthos, brick), an iron-rich soil 
matrix which hardens when exposed to repeated wetting and drying (Figure 2.2 through 
2.5 and Figure 3.7); (c) petroferric contact, where only the boundary is taken into 
account, not the iron crust itself. The WRB accords more importance to sesquioxidic 
concentrations than does the US Soil Taxonomy. A horizon characterized by well-
developed mottles within an iron-depleted matrix is for the WRB a ferric horizon (from 
Latin ferrum, iron). When the amount of mottles reaches 10% or more and they harden 
irreversibly, the horizon is considered to be a plinthic horizon (Figure 3.7). 
Petroplinthite (from Greek petros, rock and plinthos, brick) is a WRB diagnostic 
horizon characterized by a continuous iron oxide indurate layer (Figure 2.1 and Figure 
3.5) while Plinthosols are a WRB reference soil group (Figure 2.1 and 2.2). However, 
many sesquioxidic concentrations are not taken into account in soil classifications, as 
they should be because they behave as inert, inherited constituents. Nodular horizons 
(Figure 2, Figure 3.3 and 3.4) and iron crusts (Figure 2.1, Figure 3.5 and 3.6; 
synonymous with ferricrete and ironstone) are not mentioned in existing soil 
classifications. 
 
A comprehensive typology of sesquioxidic concentrations requires thin section 
investigations completed by elemental microanalysis: naked eye observations are not 
sufficient. Existing diagnostic horizons and characters should be augmented by adding 
the following horizons: 
 
Nodular horizons: These consist of discrete nodules of various forms and origins 
(Figure 3.3, 3.4, and 3.5) which should be classified as: (a) primary ferruginous nodules 
which can be subdivided according to the host material into the subcategories of 
lithomorph (weakly to moderately weathered bedrock), alteromorph (completely 
weathered individual mineral or bedrock), aquamorph (iron oxide impregnated mottled 
clays), oximorph (iron oxide impregnated oxic matrix), and vegetamorph (iron oxide 
impregnated charcoal fragment (Figure 5.8); (ii) super-ferruginous nodules subdivided 
according to the host material (if recognizable) and if appropriate according to the 
presence of other secondary minerals such as gibbsite (Figure 5.7); (iii) cortified 
nodules subdivided according to the number of cortices and their color (Figure 3.4 and 
Figure 5.8). Some types of nodular horizons are shown in Figure 2 (2.2, 2.3, 2.4, and 
2.9). 
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Figure 2. Some chemically mature and derived soil profiles (1 through 8) 
Comparison with Mediterranean and midlatitude complex soil sections (9 and 10). 

(1) Extremely developed chemically mature soil profile dating back to the Tertiary and 
even earlier. Highest geomorphic surface of Liptako (north of Niamey, Niger). Fer1: 

very hard ferricrete. Fer2: transition to mottled clays, ferricrete becoming progressively 
softer. Gl = mc: mottled clays. Ala: alloalterite. Isoal: isoalterite (see Figure 3.1). Pw: 
partially weathered zone. Fgg: fresh granito-gneiss. (2) Well-developed chemically 

mature soil profile, Plinthaquult (US Soil Taxonomy). Flat, midslope surface of Youth 
Island, Cuba, near the airport. Dcnh: dense, complex, nodular horizon, sandy matrix 

with well expressed eluvial characters. Cnh: complex nodular horizon. Rwcm: reworked 
red mottles. Isrm: in situ red mottles. This profile is developed on a kaolinic clay pedo-
sediment. (3) Moderately well developed chemically mature soil profile, Plinthaquult 

(US Soil Taxonomy). Flat, lower mid-slope surface of Youth Island, Cuba. El: eluvial, 
sandy, horizon. Cnh: complex nodular horizon. Rwcm: reworked red mottles. Isrm: in 
situ red mottles. Like profile 2, this soil is developed on a kaolinic clay pedo-sediment. 

(4) Monophased hydromorphic soil developed on sandy material originated from 
chemically mature soils. Lower slope of Youth Island, Cuba. Um + el: umbric epipedon 
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with well expressed eluvial characters. El: eluvial horizon. Isrm: in situ red mottles. (5) 
Aquic Kandihumults developed on coastal sediments, Middle Pleistocene in age. 

Southwest coast of Mexico, Gulf of Mexico, near the city of Cardenas. Um + el: umbric 
epipedon with eluvial characters. Ar: clay rich horizon with few illuvial features 

(kandic). Gl: gleyed horizon. Ps + sl: pedo-sediment and reworked, quartzic gravels in 
the form of stone lines. Isal: completely weathered, except for quartz, in situ cobbles. 
(6) Thick, undifferentated Oxisol (Queensland, Australia; see Figure 4.8). (7) Aquic 

Eutrodox (Havana plain, Cuba; see Figure 3.7). Plox: ploughed surface layer. Ox: oxic 
horizon. Gl = mc: mottled clays. Rwar: reworked soil material with very abundant 

argillans. Lm + pe: limestone with abundant peridotite fragments. (8) Oxisol (Havana 
plain, Cuba). Plox: plowed surface layer. Ox: oxic horizon. Ox + ar: clay illuviation in 

the form of coatings and infillings superimposed on a compacted oxic fabric. (9) Oxisol 
(province of Misiones, north of Argentina). Plox: plowed surface layer. Ox: oxic 

undifferentiated mass. Sl: stone line consisting dominantly of ferruginous nodules. Ala 
+ ar: partially reworked alterite mixed with clay coatings. Isoal: isolaterite. Fb: fresh 
basalt. (10) Typical section on granite of Western Europe (Brittany, area of Quintin, 
France; see Figure 4.9). The upper meter is characterized by a Dystrudept (US Soil 
Taxonomy) which corresponds to the present-day pedogenesis. A: ochric epipedon. 

Bcm: cambic B horizon. Fossil periglacial characters. Sal: stony alterite. Lal: lamellar 
alterite. Wwisoal: weakly weathered isoalterite (lixiviation of K+ and iron exudation 

from biotites and serecitization of feldpars). Fbr: fresh bedrock. (11) Section of 
juxtaposed paleosols and pedo-sediments lying on a coastal calcarenite Pleistocene in 

age (Thomas quarry, Casablanca, Morocco; see Figure 4.10). Ssh: sandy ploughed 
layer. SNa: sandy material with Neolithic artefacts (wind-reworked pedological 

material). Sc/UP: sandy clay with Upper Paleolithic artefacts (reworked pedological 
material). Rwar/Mp: reworked argillic material with Middle Paleolithic artefacts. Ar: in 

situ well developed argillic horizon. Csd: zone of decalcification of calcarenite. 
 

Iron crusts: These should be classified as follows: (a) monophased iron crusts (Figure 
3.5), (b) polyphased and polycyclic iron crusts (Figure 3.6 and Figure 5.9) subdivided 
according to their chemical composition and their complexity expressed by the variety 
of sesquioxidic features and the number of accretional phases. 
 
Mottled clays: (Figure 2.1 through 2.5, Figure 2.7, Figure 3.7) These are a deep soil 
horizon characterized by a bleached, commonly hard-setted matrix, free of faunal 
features, with ferruginous mottles randomly distributed. Various features of eluviation 
as well as of illuviation are observed under a polarizing microscope, the most common 
being intercalations of various sizes, sorting, and grain size distribution. They are or 
were affected by severe aquic conditions (US Soil Taxonomy) the equivalent of which 
in the WRB are gleyic properties. The abundance of ferruginous features increases from 
bottom to top. When ferruginization becomes dominant, this horizon becomes a 
plinthite. Mottled clays (Figure 2) either lie upon an isoalterite or are developed upon a 
sediment which usually originates from erosion of alterites or from any horizons of 
chemically mature soils. The transition to the overlying horizon is usually progressive. 
Mottled clay horizons can be subdivided according to their degree of bleaching, the 
intensity of eluviation, evidence of groundwater fluctuations through time, and the type 
of transition with isoalterites. 
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Figure 3. Tropical soils 
(1) Isoalterite of a gneiss (area of Gotheye, north of Niamey, Niger). Whitish spots 

correspond to kaolinized feldspars. (2) Sample from a plinthic horizon collected on the 
top of a Cg horizon of a Plinthaquult (Youth Island, Cuba) merging with depth into 

mottled clays. Hardened, amiboid mottles consist of a bright red, irregular ferruginous 
nucleus which becomes paler (halo) towards the bleached matrix. (3) Sample from the 
surface eluvial nodular horizon which belongs to the same profile as Figure 3.2 (Youth 

Island, Cuba). Three types of nodules are recognizable in the field: (a) bright red 
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nodules in which the bright red nucleus is the same as in the Cg horizon (Figure 3.2), 
however the reddish halo is lost, (b) brown nodules whose external color results from 

the cortex (see Figure 5.8), (c) fully black nodules (see Figure 5.6). (4) Cemented 
nodular horizon (South Western Australia, Yilgarn craton, Jarrahdale). Various types of 
nuclei are recognizable with the naked eye as well as mono- and polyphased cortex (see 

monograph 6). (5) Monophased iron crust developed in late glacial dunes, probably 
during the Holocene optimum (area of Gotheye, north of Niamey, Niger). (6) 

Polyphased iron crust lying on a terrace above the sand dunes (area of Gotheye, north of 
Niamey, Niger). (7) Mottled clays lying under a typical red oxic horizon (Havana plain, 

Cuba). 
 

Stone lines: These are common in chemically mature soils (Figure 2.9). Many 
polyphased iron crusts are in fact stone lines later cemented by iron oxides. Paleolithic 
artifacts in sub-Saharan Africa are usually included among stone lines. 
 
The most characteristic and common diagnostic horizon in the upper compartment of 
chemically mature soils is the oxic horizon (US Soil Taxonomy; Figure 2.6 through 2.9, 
Figure 3.7 and Figure 4.8), the WRB equivalent being the ferralic horizon (from Latin 
ferrum, iron, and alumen, aluminum). Oxic horizons are characterized by (Figure 4.1 
and Figure 5.10) a strong red or yellow very homogeneous soil matrix, a very strong 
microaggregation in the form of "pseudosand" and consequently a low bulk density, a 
clay fraction with a very low cation exchange capacity consisting of kaolinite with large 
amounts of iron, aluminum, manganese and titanium oxides (above 10%, rather 
frequently reaching 50%), a very low percentage of water-dispersible clay, and a very 
low percentage of weatherable minerals. Sesquioxides are present in the clay fraction in 
the form of crypto-hematite and goethite, abundant ferruginous (as well as 
manganiferous, titanium) microfragments, and ferruginous nodules in variable 
abundance, commonly absent. Microlaminated clay coatings and infillings can be 
present in oxic horizons which then appear compacted. These oxic horizons can be 
present in a large variety of soil profiles with a very variable thickness (Figure 2, Figure 
3.7 and Figure 4.8). Usually they are in the few top meters of the soil profile, resting 
above the stone line when one is present, or alternatively the stone line can be 
intercalated within oxic material. Oxisols can be also very thick, some tenths of meters 
without any clearly defined horizon (Figure 2.6 and Figure 4.8). They can rest directly 
on an isoalterite, penetrating it in the form of fingers in the alterite, or more frequently 
on mottled clays (Figure 3.7) with a progressive transition. Nodular horizons and iron 
crusts can be included in oxic horizons. 

 
Argillic horizons: These are characterized by containing a significantly higher 
percentage of phyllosilicate clay in a subsurface horizon than in the overlying soil 
material. They are frequent in chemically mature soils, although argillic horizons in 
general are not specific to the tropics, occurring from the Arctic to the tropics. One 
class, the Ultisols in the US Soil Taxonomy, is, however, specific to the tropics and 
subtropics. Ultisols have a base saturation (by sum of cations) of less than 35% at some 
depth in the profile. Argillic horizons are characterized by microlaminated clay coatings 
and infillings. However, these features can be present anywhere and in any chemically 
mature soils, the deepest already appearing in isoalterites. 
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Figure 4. Tropical soils (photographs 8–10, continuation of Figure 3) and their 
micromorphological study (micrographs 1–3) 

(8) Thick, homogeneous, red oxic material (Northern Queensland, Australia, west of 
Cairns). (9) Weakly and progressively weathered granite (Brittany, Quintin hills, 

France). The slope of the hill is covered by laminated saprolite (in French, arénes litées) 
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while its core consists of fragmented, very little weathered granite (see Figure 2.10 for 
details). (10) Red Mediterranean complex soil profile lying on partly decalcified 

lithified sand dunes, Middle Pleistocene in age. On the karstified lithified dunes lies an 
argillic horizon, some thirty centimeters thick, characterized by common 

microlaminated clay coatings. On the argillic fabric are superimposed sparitic features. 
The argillic horizon is covered by a red, homogeneous material a few meters thick, in 
which two weakly developed stone lines are at present mixed with Middle and Upper 
Paleolithic tools. Neolithic artefacts occur in the upper paler layer (Thomas quarry, 

south of Casablanca, Morocco). (Micrograph 1) A corroded quartz grain embedded in 
an oxic matrix (Havana plain, Cuba). Corrosion voids are partly infilled by black 

sesquioxides. (Micrograph 2) A biotite completely transformed into kaolinite, 
characterized by its grey birefringence. Edges of biotite lamellae are coated by iron 

oxides inherited from an earlier stage of weathering (area of Gotheye, north of Niamey, 
Niger). (Micrograph 3) Opened lamellae of very weakly weathered biotite infilled by 

sparite (Calcareous crust on granite, Maresmas, north of Barcelona, Northeastern 
Spain). 

 
Clay increase and abundance of clay coatings and infillings are not usually correlated. 
Frequently, different types of clay illuviation features are present in these profiles, 
commonly juxtaposed to one another. In thick Oxisols, compaction of some subhorizons 
is frequently due to clay coatings and infillings which bind the microaggregates. 
Spatially, Oxisols and Ultisols either form a mosaic, or the former are located on older 
geomorphic surfaces while the latter are on younger ones. Frequently, argillic horizons 
in the tropics do not contain any illuviation features or contain only a few which are 
insufficient to explain the clay increase. To avoid this uncertainty, the WRB soil 
classifiers proposed the argic diagnostic horizon in which the clay increase is not related 
to illuviation, while the US classifiers forged a new diagnostic horizon, the kandic 
(Figure 2.5), in which the clay increase is also supposed to be independent of 
illuviation, but meets the weatherable-minerals criterion for an oxic horizon, contains 
40% or more clay and no "pseudosands". 
 
The WRB also distinguishes a nitic diagnostic horizon (from Latin nitidus, shiny), only 
present in the tropics, which is in fact a type of argic. The main feature of nitic horizons 
is a moderately polyedric or nitty structure with many shiny aggregate faces, which 
cannot or can only partially be attributed to clay illuviation. 
 
Surface horizons of chemically mature soils exhibit rather low variability. The 
following are proposed by the US Soil Taxonomy and the WRB: 
 

 The albic horizon (from Latin albus white; Figure 2.3) is an eluvial in which the 
color is determined by uncoated sand and silt grains, the clayey mass being 
almost absent. In the tropics, albic matrices and horizons result from surface 
water and groundwater moving with high energy through the soil. For example, 
the matrix of nodular horizons can be albic, and some mottled clays merge 
locally into albic material. Sandy sediments, several meters thick as in 
Amazonia, that are affected by groundwater correspond to albic characters. 

 The ochric epipedon (US Soil Taxonomy) or horizon (WRB) (from Greek 
ochros, pale) is light colored and has a low organic carbon content; it can be 
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massive and hard when dry. This epipedon is not specific to the tropics. It occurs 
there mainly overlying argillic horizons. 

 The umbric epipedon (US Soil Taxonomy) or horizon (WRB) (from Latin 
umbra, shade; Figure 2.4 and 2.5) is thick, dark-colored, base desaturated, rich 
in organic carbon, massive, but rather friable. In the tropics, umbric epipedon 
occurs mainly as Ultisol and Andosol surface horizons. 
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- 
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