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Summary 
 
This chapter provides a background on risk assessment and management.  We illustrate 
modeling for risk analysis and how to deal with risk in potentially hazardous situations. 
A number of approaches are discussed, including fault tree analysis and hierarchical-
multi-objective tradeoff analysis. 
 
1. Introduction  
 
Physical large-scale infrastructures, including water resources, transportation, 
telecommunications, and electric power, are complex, interconnected, and are planned, 
developed, operated, and maintained under conditions of risk and uncertainty. These 
characteristics render their modeling and thus their risk management a complex task. 
(The terms risk and uncertainty will be formally defined in subsequent sections.) To 
assess and manage the risk of complex systems such as physical infrastructures, it is 
vital to understand the inter- and intra-connectedness among their various subsystems. 
To do so we must embrace a Gestalt holistic vision.   
 
For example, the complexity of water and related land systems is due primarily to their 
large number of constituencies and interdependent subsystems. In our quest to model 
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this complexity, however, over the years we have developed and adopted relatively 
manageable models that often oversimplify some fundamental attributes of these 
systems. Most water distribution networks consist of a vast number of interconnected 
components - e.g., the distribution network, pumps, pipes, and treatment plants. In 
addition, a hierarchy of institutional and organizational structures--e.g., federal, state, 
county, and city - is involved in the decision-making process. The degree of physical 
and institutional coupling that exists among the subsystems (e.g., the budget constraint 
imposed on the overall system), further complicates their modeling as well as 
management.  In the maintenance of water distribution systems, different 
replacement/repair strategies for varying subsystems often have unexpected impacts on 
the overall system; the demands for the resources and their appropriate allocations 
likewise have diverse impacts on a system’s reliability.  
 
The following statement seems as relevant today as it was three decades ago [Haimes 
1977]:  
 
In studying large-scale systems with technological, societal, and environmental aspects, 
the efforts in the modeling as well as in the optimization (solution of the system model) 
are magnified and often overwhelm the analysis. This is due to the high dimensionality 
(very large number of variables) and complexity (non-linearity in the coupling and 
interactions among the variables) of the resulting models. 
 
2. The Complexity of Risk Modeling; Assessment and Management of Large-Scale 
Systems 
 
Quantitative risk assessment and management must be built on sound modeling. 
Systems engineering assists in the decision-making process by selecting the best 
alternative policies subject to all pertinent objectives and constraints, using a plethora of 
modeling, simulation, optimization techniques, and other decision-making tools. It is 
very difficult to understand, let alone manage, the thousands, and maybe millions, of 
components of interconnected systems without models.  
 
The process of system modeling is grounded on art and science. A mathematical model 
is a set of equations that describes and represents the essence of the real system. It 
uncovers the various aspects of the problem, identifies the functional relationships 
among all the critical components and elements of the system and its environment, 
establishes measures of effectiveness and constraints, and thus indicates what data 
should be collected to deal with the problem quantitatively. To represent adequately the 
essence of the interconnectedness of systems such as physical infrastructures, the 
analyst must acknowledge their inherent complexity - non-linear, probabilistic, and 
dynamic - and the often chaotic human interfacing and decision-making. Further 
complicating the modeling process is the need to address the following most common 
attributes of large-scale physical infrastructures:  
 
• the science and engineering that govern the behavior of the system; 
• the large number of interconnected components within the infrastructure system 

itself and its interaction with other infrastructures and/or systems; 
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• the inherent nature of the system in terms of its constituencies, power brokers, stake-
holders, and users,   its hierarchical, organizational, and functional decision-making 
structure; 

• the multiple non-commensurate objectives and sub-objectives, including all types of 
important and relevant risks; 

• the various time horizons - immediate, short-, intermediate -, and long-term; and 
• the host of institutional, legal, and other socioeconomic conditions that require 

consideration. 
 
Indeed, risk management of large-scale systems must address the myriad considerations 
that transcend scientific, technological, economic, political, geographic, and legal 
dimensions. These considerations may explain the difficulties of modeling such 
systems, and particularly, of quantifying the risks resulting from natural and man-made 
hazards. It is not surprising, therefore, that new models, methodologies, and procedures 
are being explored to fill a real need. Policymakers - the ultimate users of these 
procedures - have greeted some of these modeling approaches and risk assessment 
methodologies with opinions ranging from overall support to outright skepticism. Many 
systems-analysis studies (risk-assessment studies are no exception) have often been 
conducted in isolation from the policymakers and commissioned agencies responsible 
for implementing any results of these analyses. In 1996, for example, the General 
Accounting Office sextensively studied ways to improve the management of federally 
funded computerized models. The GAO identified 519 federally funded models 
developed or used in the Pacific Northwest area of the United States.  Fifty-seven of 
these models were selected for detailed review, each having cost over $100,000 to 
develop.  Although successfully developed models can be of assistance in the 
management of federal programs, the GAO found that many model-development efforts 
experienced large cost overruns, prolonged delays in completion, and total user 
dissatisfaction with the information obtained from the model. 
 
The GAO study classified the problems encountered in model development into three 
categories: (1) 70% attributable to inadequate management planning, (2) 15% 
attributable to inadequate management commitment, and (3) 15% attributable to 
inadequate management coordination.  Basically, these problems stem from the simple 
fact that model credibility and reliability (i.e., appropriate representation of the essence 
of the complexity of the systems being modeled) were either lacking or inadequately 
communicated to management. 
 
Other major modeling impediments faced by natural and behavioral scientists, 
engineers, and other professionals stem from the dynamic and evolving non-
deterministic processes that govern the interactions among the system’s components. 
Deterministic models are those in which each variable and parameter can be assigned a 
definite fixed number or a series of fixed numbers for any given set of conditions. In 
probabilistic (stochastic) models, the principles of uncertainty and variability are 
introduced.  Neither the variables nor the parameters used to describe the input-output 
relationships and the structure of the elements and the constraints are known precisely.  
 
When facing the task of modeling large-scale infrastructure systems, with an 
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overwhelming number of subsystems and interacting components, it is natural to tend to 
aggregation and to reductionist modeling tools. Aggregation assumes sufficiently 
common characteristics among the components to merit linking them in one class or 
category. Reductionism, according to Webster’s Third New International Dictionary, is 
“a procedure or theory of reducing complex data or phenomena to simple terms.” 
Undisciplined reductionism of large-scale complex systems necessarily assumes overly 
simplistic relationships among their elements, and thus renders such models inadequate 
and not very useful. The study of complexity and complex systems has gained 
momentum, as is evidenced by the April 2, 1999 special issue of Science on “Complex 
Systems.” For example, Gallagher and Appenzeller [1999], define a complex system as 
one whose properties are not fully explained by an understanding of its component 
parts. Selecting the appropriate level of aggregation and reductionism, modeling tools, 
time scale, physical scale, system boundary, model topology (e.g., level of non-
linearity), model parameters, representative objectives and constraints, and the 
appropriate visions of the systems that should be modeled, constitutes the essence of the 
art and science of modeling. 
 
Take the case of water resources systems.  For generations, their complexity has defied 
a unified, holistic approach to their modeling and to understanding the influence of all 
critical, interactive, and coupled components of such systems. We know, for example, 
that the quality and quantity (Q&Q) of ground water of unconfined aquifer systems 
interact with and are functions of the Q&Q of surface water. Furthermore, the quality 
and quantity of surface and ground water (S&G) are functions of the quality of point 
and non-point discharges of treated or untreated effluents. In addition, the quality of 
S&G water is closely dependent on the land use and management practices of the 
watershed. Natural phenomena such as floods, droughts, hurricanes, climate change, 
and major earthquakes have their own critical influence on the Q&Q of S&G water.  
Water distribution infrastructure systems, which enable us to turn the faucet and expect 
clean water to flow without interruption, can and often do have their own impact on the 
Q&Q of S&G water. This is particularly true for aging and leaky infrastructures which 
deliver treated and untreated sewer water as well as clean water from natural sources. 
The following quote from a report by the National Council on Public Works 
Improvement [1988], which highlights the debilitating aging physical infrastructure in 
the US (and all around the world), is as representative of the state of the infrastructure  
today as it was in 1988:  

 
After two years of study, the National Council on Public Works Improvement (the 
“Council”) has found convincing evidence that the quality of America’s infrastructure is 
barely adequate to fulfill current requirements, and insufficient to meet the demands of 
future economic growth and development. 
 
Socioeconomic and other economic factors also have their roles to play in the Q&Q of 
S&G water. These include consumer water pricing, the cost of water and wastewater 
treatment, the cost of electric power, and water subsidies in the agricultural sector. 
Furthermore, advances in technology, industrial and manufacturing processes, 
agricultural practices, and improvements in manufacturing processes all directly affect 
the quality of the discharged water. Examples are the increased use of heavy metals in 
industry, and the impact of technology on the quantity of water used in the production 
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of steel. Old steel production processes used about 200 tons of water per one ton of steel 
production; new technology uses less than 5 tons of water per one ton of produced steel. 
Finally, the ecology is an integral part of the quality of natural water resources.  
 
In sum, the complexity of water resources and other infrastructure systems stems 
primarily from the close intricate couplings among many components and subsystems 
that span natural, man-made, socioeconomic, ecological, technological, geographical, 
and temporal factors. So far, this complexity has defied our ability to understand and 
model the above interconnectedness. 
 
3. Systems Engineering, Risk Analysis and Large-Scale and Complex Systems 
 
Risk-based decision-making and systems engineering are grounded on the same basic 
principles of holism and the Gestalt philosophy.  Although some may view these as two 
distinct fields or disciplines, they reinforce and add synergy to each other, and 
constitute a unified approach to problem-solving. Many systems and risk analysts may 
actually be unaware of the common philosophical approaches that these disciplines 
share.  Of course, the two fields differ in their historical evolution and technical 
maturity. However, both groups aspire to the Gestalt-holistic philosophy in their 
problem-solving and decision-making practices.  Thus, they use similar methodological 
frameworks, which build on a plethora of theory, methods, tools, and techniques that 
constitute the instruments with which problems are studied, assessed, understood, 
managed, and solved, to the extent possible.  
 
The systems concept has a long history. (The terms “systems engineering” and “systems 
analysis,” which may have different connotations to some individuals, will be used 
interchangeably here.) Although the term "system" itself was not emphasized in earlier 
writings, the history of this concept includes many illustrious names. 
 
About 1912, German psychologists Max Wertheimer, Kurt Koffka, and Wolfgang 
Kohler founded the Gestalt psychology, which emphasizes the study of experience as a 
unified whole. Gestalt psychologists believe that the whole is more important than the 
sum of its parts. In 1948, Norbert Wiener published his seminal book Cybernetics.  
Indeed, the genesis of the development of computer technology, information theory, 
self-regulating machines, and feedback control is often attributed to Wiener.  
 
Bertalanffy coined the term General Systems Theory around 1950. Kenneth Boulding, 
an economist, published his work on General Empirical Theory and claimed that it was 
the same as the General Systems Theory advocated by Bertalanffy. The Society for 
General Systems Research was organized in 1954 by the American Association for the 
Advancement of Science.  The society's mission was to develop theoretical systems 
which would be applicable to more than one traditional field of knowledge. 
 
Four decades ago, Bertalanffy noted that within the "systems approach," mechanistic 
and organismic trends and models tried to master systems either by “analysis," "linear 
(including circular) causality," "automata," "wholeness," "interaction," "dynamics" (or 
other terms used to circumscribe the difference). Major books on large-scale systems 
and hierarchical analyses  emerged, primarily during the 1960s and 1970s: on decision 
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analysis by Raiffa [1964], on systems theory and biology, edited by Mesarovic [1968], 
on modern systems research for the behavioral scientist, edited by Buckley [1968], on 
theory of hierarchical, multilevel systems by Mesarovic et al., [1970], on optimization 
theory for large systems by Lasdon [1970], and on optimization methods for large-scale 
systems, edited by Wismer [1971]. Other books are on hierarchical analyses of water 
resources systems: modeling and optimization of large-scale systems by Haimes [1977], 
a handbook of large-scale systems engineering applications, edited by Singh and Titli 
[1979], a systems and control encyclopedia, edited by Singh [1987], on metasystems 
methodology by Hall [1989], on hierarchical multi-objective analysis of large-scale 
systems by Haimes et al. [1990], on systems engineering by Sage [1992] and Sage and 
Rouse [1999], on systems-based risk analysis by Haimes [2004], and an encyclopedia of 
operations research and management science, edited by Gaas and Harris [1996]. There 
is also literature on large-scale systems: modeling, control, and fuzzy logic by Jamshidi 
[1997], and on process patterns - building large-scale systems using object technology 
by Ambler [1998]. 
 
Although the philosophy of risk analysis does not enjoy the same formal, historical 
documentation as the systems concept does, it has nevertheless an even longer tradition.  
Ancient civilizations adhered to structural strength, reliability, and safety, even if they 
did not call their practice “risk analysis.”  Without complying with the basic tenets that 
guide today’s approach to risk analysis, how can we explain, for example, the durability 
of such structures as the pyramids in Egypt and Mexico?   
 
- 
- 
- 
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