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Summary 
 
The discussion in this paper has to do with the uncertainty of knowledge, in particular 
regarding that paradigm of scientific certainty, physics. We argue that starting with the 
Greeks it has not been possible to predict events with absolute certainty, and even the 
contemporary laws of physics are in fact statistical and result in predictions that are 
probabilistic in character. We begin with the simple statistics of Gauss and the law of 
errors for independent measurements and demonstrate how the tying together of a 
hierarchy of scales in complex phenomena gives rise to more general statistical 
processes than envisioned by the early physical scientists. The dynamical behavior of 
complex processes is contained in the time series for physical observables. The coarse-
graining of such time series data provides a renormalization group description of the 
dynamics of complex phenomena. These renormalization group relations describe how 
the hierarchy of scales in complex systems are interrelated. In particular, the Lévy 
distribution is shown to be a fixed point of a renormalization group, indicating the 
interdependence of the statistical fluctuations in complex phenomena. In our argument 
we employ scaling concepts borrowed from the Ising spin model of magnetic phase 
transitions, in order to be concrete in our discussion, but we avoid use of the detailed 
mathematics. We reserve most of the mathematics for the appendices. 
 
1. Introduction 

The rhythmic changes of color in oscillating chemical reactions, the biorhythms that 
order human life, including the beating of the heart, and the changes in phases among 
physical phenomena are all consequences of the organization of countless unseen 
processes without which the observed effect would be absent. In the oscillating 
chemical reaction the nonlinear couplings among several of the reactants and products 
of the reaction (out of a large number of possible couplings) provides the feedback 
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mechanism necessary for the concentration of the chemical to vary harmonically in 
time. Similarly, the stability of the heartbeat appears to be due, at least in part, to the 
nonlinear couplings of the multiple cardiac pacemakers. In both of these examples the 
underlying complexity, the individual chemical reactions in the first instance and the 
electro-chemical degrees of freedom in the second, are entrained by a scaling process 
that acts across the dynamical ranges of each of the systems. Our physical 
understanding of such hierarchical coupling became clear with the development of 
renormalization group theory which, through the use of coarse-graining, demonstrated 
how the microscopic, short-range detailed interactions of a physical process are not 
important for the determination of the macroscopic, long-range patterns. This view 
enabled us to understand how physical systems as different as water and metal share 
certain fundamental properties in so far as transitions between phases are concerned.  

Herein we shall sketch the development of our theoretical understanding of complex 
physical systems, starting with the Greek philosophers and atomic theory. We start so 
far back because the basic picture of the physical world has not changed very much in 
2500 years. It is true that we now have formal mathematical theories that are able to 
make testable predictions regarding the behavior of the world, but as we shall see, those 
predictions require a great deal of theoretical background in order to properly interpret 
them. That is to say, predictions are not given in terms of an anticipated, definite, 
unambiguous outcome of an experiment, such as the result of a horse race. Rather, 
predictions are more likely to take the form of a weather report, with a given probability 
for rain. Why we settle for this latter type of prediction over the former is part of the 
story. 

Let us begin by noting that all the physical and chemical laws that play important roles 
in the physical and life sciences are statistical in nature. Consider the simple example of 
a gas under pressure at a given temperature in a container. If the container confines N 
molecules of gas then at any moment in time the relations among the thermodynamic 
variables given by Boyle's law could be tested and would be found to be inaccurate by 
departures of order N . According to Schrödinger, one of the founders of quantum 
mechanics, the N -rule concerns the degree of inaccuracy to be expected in any 
physical law. The simple fact that the descriptive paradigm of natural order, the laws of 
physics, are inaccurate within a probable error of order 1/ N , where N is the number 
of molecules involved in the phenomenon to which the law is applied, has been difficult 
for many outside the physical sciences to accept. 

Buried in the N -rule of Schrödinger is the legacy of Gauss and the law of errors, 
which we shall discuss in Section 2. The law of errors subsequently evolved into the 
Central Limit Theorem (CLT) and birthed the Gaussian (normal) distribution of 
probability. The application of these ideas to physical phenomena has lead to the view 
that the macroscopic laws we observe in natural phenomena, such as Boyle's law, Ohm's 
law, Fick's law and so on, are all the consequence of the interaction of a large number of 
particles, and therefore can be described by means of statistical physics. Schrödinger, in 
his book "What is Life?", went on to say that because of the regularity in biology, in 
particular in heredity, that while still conforming to the laws of physics, biology might, 
in fact, have additional laws which had not up to that time been identified. The idea of 
formulating a new law in biology did not intimidate Schrödinger, since he, after all, had 
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been one of the architects of the quantum revolution in physics. This argument with 
only minor modifications can be applied with equal vigor to all manner of complex 
phenomena, including those in the social and medical sciences as well. 

Much has changed in the fifty years since Schrödinger first passed along his insights 
regarding the application of physical law in biology. In particular the way we 
understand the statistics of complex phenomena in the context of the natural and social 
sciences as well as in life science is quite different from what it was then. Herein we do 
not propose a new law in Schrödinger's sense, but we do present in Section 3 evidence 
for the deviation from his N -rule, which suggests that the statistical basis for 
Schrödinger's understanding of biology, or complexity in general, has changed. In the 
physical sciences we have often, in the past, used the words complex and complicated 
to mean the same thing. It is only recently that we have discovered that a process need 
not be complicated to generate complex phenomena, that is, complex phenomena need 
not have complex or complicated descriptions. In such cases the complicated nature of 
the phenomenon resides in the way the various scales contributing to the process are 
interconnected. This interconnectedness cannot be described by analytic functions, 
since the tying together of different scales prohibits the taking of derivatives necessary 
for the definition of such functions.  

In the middle seventies Elliott Montroll and I adopted the statistical physics strategy to 
the study of complex phenomena, that strategy being to follow the possible evolution of 
large numbers of systems rather than one single system. In this way the erratic behavior 
of large numbers of single trajectories can be smoothed over to define probability 
densities. Even here, however, we found that there were some residual complications. 
The custom had been to replace a stochastic dynamical equation (a Langevin equation) 
describing the evolution of a single particle driven by a random force with a partial 
differential equation (the Fokker-Planck equation) to describe the evolution of the 
probability density for an ensemble of such particles. However, when the phenomenon 
is so erratic that the underlying process does not have finite variance, this approach 
breaks down and only an integral equation can be used to describe the evolution of the 
probability density. We discovered that the mathematician Paul Lévy had generalized 
the CLT in the 1930's to cover such situations and subsequently we found that this is the 
natural statistical distribution for describing many, if not most, complex phenomena in 
the natural, social and life sciences.  

Lévy statistics, that we discuss in Section 3, naturally arise in the modeling of the 
evolution of phenomena that cannot be described by ordinary differential equations of 
motion; phenomena that leap and jump in unexpected ways to obtain food, that 
unpredictably twist and turn to avoid capture, and that suddenly change the direction of 
a gambit to evade checkmate. To understand these and other analogous processes we 
find that we must adopt a new type of modeling, one that is not in terms of differential 
equations of motion. It is clear that the fundamental elements of complex physical 
phenomena such as phase transitions, the deformation of plastics and the stress 
relaxation of polymers, satisfy Newton's laws. In these phenomena the evolution of 
individual particles are described by ordinary differential equations that control the 
dynamics of individual particle trajectories. It is equally clear that the connection 
between the fundamental laws of motion and the observed large-scale dynamics can not 
be made in any straightforward way. In fact the solution to one of these problem areas, 
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the renormalization group approach to phase transitions, seems to put the doctrine of 
reductionism into crisis.  

In the twenty-five years the author has been interested in this problem area scientists 
have found that the ideas from renormalization group theory and the integral equations 
from probability theory dovetail as we discuss in Section 4. It is now clear that to 
understand certain classes of complex phenomena we must adopt a type of modeling 
that involves scaling, fractional differences and/or fractional derivatives. In Section 5 
we summarize our discussion and draw some conclusions. 
 
2. Normal Statistics 

The concept of complexity has undergone a remarkable change over the past half 
century. At the end of the nineteenth century the separation of phenomena into simple 
and complex was relatively straightforward. A simple system was one that could be 
described by one or a few variables and their equations of motion, given, for example, 
by Newton's laws of motion for material bodies or Maxwell's equations for the 
electromagnetic field. In such systems the initial conditions are specified and the final 
state is calculated (predicted) by solving the equations of motion. The predicted 
behavior of the system is then compared with the result of experiment and if the two 
agree with one another, within a pre-established degree of accuracy, the conclusion is 
that the simple model provides a faithful description of the phenomenon. Thus, simple 
physical systems have simple descriptions.  

As more particles are added to the system there are more and more interactions, and the 
relative importance of any one interaction diminishes proportionately. There comes a 
point at which the properties of the system are no longer determined by the individual 
particle trajectories, but only by the averages over a large number of such trajectories. 
This is how the statistical picture of a physical phenomenon replaces the individual 
particle description. The single particle trajectory is replaced with the ensemble 
distribution function that describes an ensemble of single particle trajectories and the 
individual ordinary differential equations of motion fade into the partial differential 
equation of motion for the probability density. In this way the deterministic prediction 
of a definite future of a single particle that is characteristic of simple phenomena is 
replaced with a predicted collection of possible futures for an ensemble of particles that 
is characteristic of "complex" phenomena. 

This is how statistical physics first emerged from classical dynamics in the hands of 
Maxwell working in England and Boltzmann working in Germany in the nineteenth 
century. Maxwell introduced the probability density into physics as a way of smoothing 
the complexity of the individual particle dynamics in gases, while Boltzmann did the 
same using the concept of entropy. The two methods came together at the turn of the 
century in the work of the American, Gibbs, who showed how to express the entropy of 
a system in terms of the probability density. We shall not review the concept of entropy 
here, except to note that the second law of thermodynamics can be expressed through 
the requirement that the entropy increases in every thermally isolated system. The 
monotonically increasing entropy is a measure of disorder and is not necessarily a 
measure of complexity, although we argue elsewhere in this encyclopedia that such 
measures can be constructed from the entropy. 
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This statistical picture of reality actually began with the atomic hypothesis of 
Democritus. He argued, 2500 years ago, that all matter was made up of microscopic, 
indestructible, bits of matter called atoms moving along deterministic trajectories in 
predominately empty space. Most of the time the particles move in straight lines, but on 
occasion two particles collide, changing their speeds and directions of motion. Although 
completely deterministic, there is such a large number of these scattering events (the 
number of two-particle scatterings increases as the square of the  number of particles) 
that we can not keep track of them. Thus, to our limited human minds, the motion of the 
particles in a gas appears to be random; in this context randomness is a completely 
subjective concept. This is also the Maxwell-Boltzmann picture of the kinetic theory of 
gases. There are, of course, some refinements of the nineteenth century version over the 
original, with, for example, the probability density being expressed in terms of the 
kinetic energies of the individual particles. The essential ideas of Democritus and those 
of Maxwell and Boltzmann are, however, the same. 

Somewhat later, another Greek, Epicurus, saw things a little differently. Rather than 
only the scattering events described by deterministic dynamics, and therefore in 
principle reversible in time, Epicurus believed in indeterminate events. He argued that 
in order to realize such non-deterministic processes as free will, there must be collisions 
among the atoms that are uncaused and are therefore objectively random. This 
fundamental randomness leads to an asymmetry in time, since the occasion of these 
events can not be anticipated, so that life can unfold in one direction in an unpredictable 
way and free will is again free. 

Statistical physics has endorsed the view of Democritus with only a few dissenting 
voices, among the them the Noble Laureate, Ilya Prigogine, who, along with a few 
others, has in the past few decades put forward theories of microscopic irreversibility. 
Thus, we have both the views of Democritus and Epicurus represented in modern 
statistical physics. Herein we shall be primarily concerned with the dominant, that is to 
say the reversible, deterministic, view, since most of what we understand about the 
hierarchical structure of the physical world is based on this view. Thus, we are not 
concerned with the fundamental question of the direction of time, only with the vast 
number of scattering events making up a typical physical process. 

Suppose we take a large number, N say, of measurements of a complex process, or 
sample a continuous time series N times at equally spaced time intervals, in either case 
we obtain the data set { }jX , 1, 2, ,j N= . The question now arises as to how best to 

characterize this set of N data points. The measure that has been used is that of the 
arithmetic average expressed as the summation over all the data points divided by the 
number of data points 

1

1( ) , and ( )
N

j
j

X N X X X N
N=

= =∑ . (1)  

The overbar denotes the arithmetic averaging procedure and the quantity ( )X N  can be 
viewed as the displacement of a random walker after taking N steps of sizes 

1 2, , , NX X X . If each of the individual step sizes are of unit magnitude, the variation 
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in the size of the displacement is N , so that the variation in the average value is given 
by 1/ N . Gauss was the first scientist to argue that the average is the best 
representation of a large data set, particularly a data set in which the variation in the 
measurement appears to have no structure or pattern. All thermodynamical variables 
had been thought to be averages of this kind over repeated measurements of a physical 
observable. 

The next question is how reliable the mean is as a way to characterize the data. For 
example, a student with a C average obtained from all courses receiving a grade of C, is 
quite different from a student with a C average that receives half A's and half F's in the 
course work. The first student is truly average, knowing a minimum amount about all 
the required material. The second student, on the other hand, strongly oscillates between 
flashes of brilliance and either being completely uninterested or completely 
incompetent. In other words the mean only tells part of the story, with the variance and 
other, higher, moments of the data set containing additional information. The variance 
of the data set is calculated using the arithmetic average 

( )
2

2 2

1

1 N

j
j

VarX X X X X
N =

= − = −∑  (2) 

from which we see that the variance is a measure of the magnitude of the variation in 
the data relative to the mean. The greater the variance, the greater is the degree of 
variation about the mean value, and the less reliable the mean becomes as a 
representative of the data set. 

Suppose the data set is the local temperature, pressure or any other local 
thermodynamical property of the atmosphere. Each measurement involves the 
properties of N particles and therefore the measurement contains fluctuations or errors 
on the order N . The N used here does not refer to all the particles in the atmosphere, 
but to those in the immediate vicinity of the measurement. This N is of the order 1023, 
which is certainly large enough for statistics. Thus, Schrödinger's N -rule indicates 
that it is not possible to find the "true" value of a thermodynamic quantity from a single 
measurement. The instantaneous value of the thermodynamical variable has no 
meaning, only the ensemble of measurements has meaning - the mean value. In the 
theory of error of measurements, a discipline invented by Gauss, the probability density 
describing the statistical properties in a data set was found to be the bell-shaped 
distribution of Gauss. The Gaussian distribution is able to characterize the entire data 
set in terms of two quantities, the mean and the variance.  

The mathematicians were able to generalize these ideas out of their physical context and 
to identify the basic conditions underwhich a normal (Gaussian) distribution results. In 
Appendix A we sketch how the sum of random variables given by (1) satisfies the 
conditions for the CLT. In particular, we see that all distributions for which the mean 
square step length is finite, are attracted to the Gaussian distribution, which is to say, the 
statistics of the properly scaled random walk variable ( ) /X N N  becomes normal as 
the number of steps becomes infinitely large. This applies for all distributions of the 
step sizes that decrease more rapidly than an inverse cube of the step length. These 
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properties are summarized in the conditions: (1) the distribution of the random steps 
must be sufficiently narrow that the second moment is finite; (2) the random variable 
must not have long-range correlations; (3) the statistics of each of the random steps 
must be the same and (4) there must be a sufficient number of steps.  This is the content 
of the CLT in its usual form. However, Poincaré said of the law of errors: "All the world 
believes it firmly, because the mathematicians imagine that it is a fact of observation 
and the observers that it is a theorem of mathematics." He was, of course, alluding to the 
fact that the measurements of a given phenomenon does not necessarily satisfy the 
underlying assumptions necessary for the law of errors and one must examine each 
process separately. 

This is how the matter stood at the turn of the century. The probability that a random 
variable X lies in the phase space interval ( , )x x dx+  is given by ( )P x dx  where the 
probability density is given by 

( ) ( )2
22

1, ,
42

x X
P x X expσ

σπσ

⎡ ⎤−⎢ ⎥= −
⎢ ⎥
⎣ ⎦

 (3) 

where 2σ  is shorthand for the variance (2), and the parametric dependence of the 
probability density is explicitly indicated. If X is interpreted as the single-particle 
momentum of the molecules in a gas and the variance is expressed in terms of the 
temperature, T, of the gas, 2 / 2mkTσ = , where m is the mass of the molecule and k is 
Boltzmann's constant, then (3) is the Maxwell-Boltzmann distribution. 

Thus, normal statistics is a consequence of the interactions of the many elements in a 
system being short-ranged. This is the domain of equilibrium statistical mechanics, 
where the system is spatially featureless and all the physical properties of the 
phenomenon are determined by means of averages over ensemble distribution functions 
of the form (3) or other equally benign distributions. We know this description is 
adequate for the thermodynamical properties of a gas, the conduction of electrons in 
normal metals, and normal diffusion. The key feature of such processes is that the time 
scale for the microscopic interaction is very much smaller than the typical time scale for 
macroscopic observables. It is this time scale separation that gives rise to the CLT in its 
classical form. However, what happens when the interactions are no longer short-range 
or the system is no longer in equilibrium? This is the case when the separation of time 
scales does not occur and the interaction time of microscopic processes may overlap 
with those of macroscopic processes. 
 
- 
- 
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