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Summary 
 
We present here and compare the most common approaches to community structure 
identification in terms of sensitivity and computational cost. The work is intended as an 
introduction as well as a proposal for a standard benchmark test of community detection 
methods. 
 
1. Introduction 
 
The analysis of complex networks has received a vast amount of attention from the 
scientific community during the last decade. Statistical physicists in particular have 
become interested in the study of networks describing the topologies of a wide variety 
of systems, from biological technological or social networks. Although several 
questions have been addressed (see the review paper by Costa et al. for a complete set 
of measurements), many important ones still resist complete resolution. One such 
problem is the analysis of modular structure found in many networks. Distinct modules 
or communities within networks can loosely be defined as subsets of nodes which are 
more densely linked, when compared to the rest of the network. Such communities, as 
usually called in social sciences, have been observed, using some of the methods we 
shall go on to describe, in many different contexts, including biological networks, 
economic networks and most notably social networks. As a result, the problem of 
identification of communities has been the focus of many recent efforts. As a concrete 
example we show in Figure 1 the network representing the Spanish research community 
of Statistical and Nonlinear Physicists (FISES, http://www.fises.es).  
 
We consider two scientists linked if they have co-authored a panel contribution to any 
of the conferences. To be able to consider the historical structure of this network we 
``accumulate'' the network over all the conferences, that is, once a link is created, it 
remains, even if the authors never collaborated again. The final network (accumulated 
over all the years) is comprised of 784 nodes with 655 (84%) of those belonging to the 
giant component. Green nodes denote the member of the scientific committees. 
 
Nodes belonging to the same community are more than likely to have other properties 
in common and hence community detection in large networks is potentially very useful 
for instance when trying to understand dynamical properties. In the world wide web, 
community analysis has uncovered thematic clusters. In biochemical or neural 
networks, communities may be functional groups, and separating the network into such 
groups could simplify the functional analysis considerably. 
 
The problem of community detection has been the subject of study in various 
disciplines. A simpler version of this problem, the graph bi-partitioning problem (GBP) 
has been the topic of study in the realm of computer science for decades. Here one looks 
to separate the graph into two equal-size communities, which are connected with the 
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minimum number of links. This is indeed an NP complete problem; however several 
methods have been proposed to reduce the complexity of the task. In real networks one 
cannot assume how many communities there are, but in general it is more than two. 
This makes the process much more costly.  
 

 
 

Figure 1. FisEs network. Network of scientists that contributed to the Statistical Physics 
(Física Estadística) conferences in Spain. 

 
Furthermore communities can be organized in hierarchies, meaning that different 
organizational levels can be simultaneously important and the question to the best 
partition has not a single answer. This hierarchical organization strongly affects the 
dynamical properties of networks. Another additional issue is that sometimes there is 
not a clear separation among communities and they present a certain degree of 
overlapping. 
 
In this chapter we would like to present the recent advances made in the field of 
community identification in networks in a clear and simple fashion. To this end, the 
sections are organized as follows. In the next section we describe some ways to define 
communities in a network context. Following this, we present a method to evaluate a 
particular partition of a network. Then, we go on to describe the various recent methods 
starting with link removal methods, going on to agglomerative methods, followed by 
methods optimizing modularity and finally “other” methods. Some of the methods 
presented do not necessarily fit into just one of these classifications, and there may be 
some overlap. We finally introduce different structural organizations in networks and 
dynamical applications of modular networks.  
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2. Definitions of Communities 
 
There is not a unique definition of what a community is, instead the idea of 
communities is different and has been evolving depending on the field that defines it. 
The first definitions of community come from the field of social networks, where the 
communities are studied and understood according to the effect that an individual player 
has on the network and vice versa. Some of these ideas have been used and developed 
by some of the methods we present below, while new approaches have also been 
adopted from other fields such as physics or mathematics. 
 
The different definitions of what is a community are all based in the concept of a 
subgraph, that is, groups of nodes and all the connections between them. The definitions 
can be classified into two main conceptual categories, those who use self-referral 
information and those based on comparative definitions.  
 
Self referring definitions only use information of the structure of the network to decide 
what groups of nodes can be considered as a community. The most restricting and 
simple community structure is a clique, defined as a subgraph that is fully connected 
(i.e. it has all the possible edges between its nodes). Since this constraint is rarely 
fulfilled in real sparse networks, there are other approaches that relax it, such as n-
cliques, n-clans and n-clubs. Self-referring definitions, while useful in characterizing 
communities, which are already known, are not the best choice while trying to find 
them since the methods to find the cliques in a network is very costly. 
 
A second type of definitions use topological information to compare if a group of nodes 
is a community or not, for instance, counting how many links have the nodes of the 
subgraph inside of it and how many links have them with nodes outside the subgraph. 
The strong definition of community requires that all the nodes of a community must 
have a larger number of links to members of the same community than to members of 
other communities. A lighter version of this definition is the weak definition of 
community proposed by Radicchi et al., where it is required that the sum of links inside 
the community is larger than the total number of links to the outside. This definition and 
some small variations of it is the most used in the majority of the methods that we will 
present later, since comparing the internal structure of a community to the external 
structure gives rise to a measure of how good a particular partition is. 
 
3. Evaluating Community Identification 
 
Once a partition of the network into communities has been identified, the problem turns 
on to evaluate how good is the partition. Girvan and Newman proposed a simple 
approach, based on the intuitive idea of lack of community structure in random 
networks. Consider an arbitrary partition of a given network into  cN communities. We 
can define a c cN N×  size matrix e  where the elements ije  represent the fraction of 
total links starting at a node in partition i  and ending at a node in partition j . Then, the 
sum of any row of e , i ijja e=∑  corresponds to the fraction of links connected to i . 

If there is no community structure in the network the expected value of the fraction of 
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links within partitions can be estimated. It is simply the probability that a link begins at 
a node in i , ia , multiplied by the fraction of links that end at a node in i , ia . Then the 
expected number of intra-community links is just i ia a . We also know that the real 
fraction of links exclusively within a partition is iie . Comparing the two and summing 
over all the partitions in the graph we get 
 

2

1
( )

c

ii i
i

Q e a
=

= −∑ .       (1) 

 
This is a measure known as modularity. As an example, we can consider a network 
comprised of two disconnected components. If we then have two partitions, 
corresponding exactly to the two components, modularity will have a value of 1. For 
particularly “bad” partitions, for example, when all the nodes are in a community of 
their own, the value of modularity can take negative values.  
 
It is tempting to think that random, Erdos-Renyi networks have little or no community 
structure. However, as Guimerà et al. showed, this in general is not the case. In fact, it is 
possible to find a partition which not only has a nonzero value of modularity for random 
networks of finite size, but that this value is quite high. For example a network of 128 
nodes and 1024 links has a maximum modularity of 0.208. This suggests that 
community structure appears in random networks due to fluctuations.  
 
From here on we will look at different methods of community identification presented 
recently. First we consider methods based on link removal. 
 
4. Link Removal Methods 
 
Divisive methods extract the partition into communities of a network by removing some 
(or all) of its links until the network is no longer connected or we have a division into 
communities that meets certain requirements. However, to be able to obtain useful 
results we need to remove the appropriate links, otherwise the communities will be 
meaningful. Several methods have been proposed to identify the links that we should 
remove, which we will revise in this section. 
 
4.1. Shortest Path Centrality 
 
One of the first divisive methods presented in uses the idea of centrality, a measure of 
how central the node or link is in the network, to decide which links need to be 
removed. The algorithm uses a particular type of centrality, shortest path centrality, 
which measures the number of shortest paths between pairs of nodes that pass through a 
certain node or link. The links with the highest centrality usually act as a bridge 
between the communities, so if we remove them we can split the network into densely 
connected communities. 
 
The method works recursively eliminating all the links of the network, and stops when 
there are no more links and all the nodes are isolated. Every time a link is removed, all 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

COMPLEX NETWORKS - Communities in Complex Networks: Identification at Different Levels -  Alex Arenas, Jordi Duch, Sergi 
Gómez, Leon Danon, Albert Díaz-Guilera 
 

©Encyclopedia of Life Support Systems (EOLSS) 
 

the centralities are recalculated, otherwise we will obtain an erroneous community 
detection. This part of the algorithm is the one that requires most computer power and, 
for a network of size n with m links, using the fastest methods developed independently 
by Newman and Brandes the speed of calculating all link betweenness-es in one step 
still remains of 2( )O m n  for unweighted networks. This limits the size of the graph that 
we can process in a reasonable time to a maximum of around 10000 nodes. Figure 2 
shows the application of this algorithm to the network depicted in Figure 1. 
 

 
 

Figure 2. Binary tree showing the result of applying the Girvan-Newman algorithm and 
our visualization technique to the network of coauthors in FisEs. 

 
Each branch corresponds to a real community and the tips of the branches correspond to 
the people that have played a major role in the different research groups. One can 
identify here that the members of the scientific committees over the years have indeed 
played an important role in the development of the community and that they are 
precisely quite central nodes in the respective local communities. 
 
4.2. Extensions of the Shortest Path Centrality 
 
The same authors of the previous method have also presented two alternative methods 
to detect community structure by betweenness centrality by calculating this value using 
two alternative approaches. However, although they are conceptually interesting, both 
approaches require higher computation than the previous method, and they do not 
improve the accuracy of it. 
 
The first approach considers the network as a circuit, where links are assigned a unit 
resistance and we select two nodes that we define as unit voltage source and sink. Using 
Kirchoff’s laws we can calculate the current flow between these two nodes. Adding the 
flows we will obtain a mesure similar to the centrality, where those links with the 
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lowest resistance (shortest path) carry the most current and, therefore, are the most 
central. The second approach uses random walks to determine the betweenness 
centrality of the links. The network is used as a substrate for signals that perform a 
random walk between pairs of nodes. The link betweenness in this case is simply the 
rate of flow of random walkers through a particular link summed over all pairs of 
vertices.  
 
4.3. Information Centrality 
 
Another divisive algorithm available uses the network efficiency measure proposed by 
Latora and Marchiori. This measure quantifies how efficient is a network in the context 
of information exchange. If we remove links of the network, its efficiency decreases a 
certain amount of information centrality. This method, presented by Fortunato et al., is 
based on the idea that if we remove the links that act as bridges between communities 
we should observe the largest drops in network efficiency. from this premise, the 
method operates similarly to the shortest path centrality method, removing recursively 
all the links and recalculating the efficiency of all the links at every step. The process is 
slower than the GN running at 4( )O n , but instead the accuracy obtained in the 
detection is better when the communities to be found are more diffuse. 
 
4.4. Link Clustering 
 
Another approach uses the idea that linked nodes belonging to the same community 
should have a high clustering coefficient, that is, they share larger number of common 
neighbors. Based on this idea, the algorithm of Radicchi et al. postulates that the 
proportion of possible number of loops that go through internal links should be much 
larger than the proportion of loops for links pointing to outside of the community. The 
algorithm also works recursively as the previous ones, but in this case by recalculating 
the link-clustering coefficient, which measures the number of loops of a certain length 
that pass through each link. Longer loops require more computer resources but provide 
more accurate results. 
 
This algorithm provides a way to stop the detection process when a certain condition is 
fulfilled, instead of decomposing the whole network until all the nodes are separated. It 
is also faster than the previous ones, since to compute the link-clustering coefficient we 
only need local information. However, it is not very useful with networks with a very 
low clustering coefficient, such as trees, sparse graphs or disassortative networks, where 
we do not have the necessary loops to compute the link-clustering coefficient.  
 
5. Agglomerative Methods 
 
Another approach to identify the communities of a network is to start from all the nodes 
being in separate communities, and some strategy to join or agglomerate them in larger 
groups. Here we present some of these methods and their grouping algorithms. 
 
5.1. Hierarchical Clustering 
 
Hierarchical clustering has been used traditionally in social networks analysis to extract 
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the communities of the network. The idea of this method is based on the measurement 
of the similarity between the elements of the nodes according to some property. Starting 
from an empty network, the method selects those node (or groups of nodes) that have 
the highest similarity and joins them. This process is again repeated recursively until all 
the links are added or when we meet a certain condition. The method is very fast and it 
can work almost in linear time, being able to analyze networks that cannot be processed 
otherwise. However, the results are highly dependent on the similarity metric that is 
used to detect the communities. 
 
5.2. L-Shell Method 
 
A second approach focuses on identifying the community around one node of the 
network by agglomerating its neighbors until a condition is fulfilled. In particular, the 
algorithm consists on constructing a L-shell around one node, where a L-shell is a subset 
of the nodes with a maximum distance of the shortest path to the node origin is less or 
equal to L . The algorithm starts from the origin and adds more nodes by increasing the 
distance L  until the emerging degree (number of links to nodes outside the L-shell) is 
lower than a cut-off value, and then it is stopped. Those nodes that fall inside the L-shell 
are grouped within one community.  
 
This algorithm is particularly interesting when one is more interested in finding a single 
community and not in detecting the entire community structure. If we want to make the 
algorithm global, the authors suggest that we should repeat the process for each node, 
and then perform a statistical analysis of the results to detect the communities. Since the 
method uses local information, it is one of the fastest available. 
 
- 
- 
- 
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