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Summary 
 
To understand the workings of systems from diverse areas of research, e.g. ecology, 
economy, the social sciences, and biology, it is important to take into account the 
interactions between the individual elements of the system under study. This is 
especially true when the behavior of the system is a form of self-organization, the 
development of order that is not caused by external organizing forces, but a result of 
interactions between the elements of the system. This realization has lead to the use of 
individual-based models. Computer simulations of such models allow the investigator to 
test different hypotheses about the system under study. 
 
The mathematical theory for such systems and systems that change over time in general, 
is that of dynamical systems. Valuable concepts have been developed to increase 
understanding of such systems. This article explains the basis concepts of dynamical 
systems theory, and shows their role in examples from physics, chemistry, biology, 
ecology, traffic, and the brain.  
 
1. Introduction 
 
Some systems in this world are best understood by considering the parts they consist of 
and the possible interactions between them, and combining these to infer the expected 
behavior of the system. Examples of such systems are the cantilever, the pulley, and the 
mechanical clock. 
 
As soon as the number of elements in a system becomes more than a few however, this 
approach becomes infeasible. The classical approach then is to measure global 
properties of the system. A good example of this is thermal energy. Whereas it would be 
virtually impossible to measure the energy of each individual particle of a substance, it 
is straightforward to measure the temperature of the substance. If the substance is in a 
state of thermodynamic equilibrium, its thermal energy can be computed from the 
temperature. 
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The principle of using a global measure (temperature, in the example) as a characteristic 
for the behavior of the complete system is used in almost all sciences. Some other 
examples are indices of stock exchanges in economy, mortality and growth rates in 
ecology, and welfare statistics in sociology. 
 
The validity of such global measures stands or falls with the presence of equilibrium. 
Measures of systems that are not near equilibrium are unlikely to be representative of 
the complete system. Moreover, the development over time of non-equilibric systems 
can differ widely from that of the same system near equilibrium, as will be seen in this 
article. 
 
Growing awareness of these and related issues, in combination with the widespread 
availability of computers, has lead researchers in many different fields to use different 
types of models. Next to the equilibrium-based models that have been common for long, 
other models begin to emerge that explicitly represent the individual elements in the 
system of interest. Such models allow researchers to study the effects of the local 
interactions between these elements, and to understand how global behavior can be 
highly unpredictable as a result of these interactions. 
 
The mathematical theory appropriate for systems whose behavior is determined by 
interacting elements is that of dynamical systems. This branch of mathematics studies 
systems that change over time, and has developed concepts that may improve 
understanding of the real world systems that are modeled. This article will introduce 
some of the basic concepts of this theory, and then give examples of real world systems 
that exhibit self-organization and chaos. 
 
2. Individual-based modeling 
 
One of the clearest examples where modeling the individual elements of a system has 
been recognized and used as an alternative to classic, equilibrium based models, is 
ecology. Here, measuring and modeling the individual elements of a system instead of 
global properties of the system is known as individual-based modeling.  
 
To convey the point that modeling interactions between individuals is required for 
understanding global behavior of the system, an example concerning ethological 
research into the foraging behavior of ants will be briefly described. Ants transporting 
food tend to use the same routes. The choice of these routes is not given in by a central 
coordinating force, nor by any individual ant. Rather, this choice is the result of 
interactions between the ants through the environment. While walking, ants deposit a 
pheromone. After food has been found, the amount of pheromone that is deposited 
during walking increases. Since ants are attracted by this substance, they are more likely 
to walk over pheromone trails than in other places. While differences in the amounts of 
pheromone on different paths are initially small, these differences are enlarged by the 
fact that the paths that already have more pheromones attract more ants, and thus gather 
even more pheromones. This positive feedback principle increases initially small 
differences such that eventually all ants follow the same path. Due to the increase in 
deposits caused by finding food, and due to the shorter travel times and hence higher 
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frequencies of shorter paths, self organization causes ants to find short paths to food 
sources.  
 
Individual-based modeling has been used to investigate the relative influences of space 
perception, memory, pheromone trails, sensitivity of the sensory system, stimulation of 
nestmates, and food distribution on foraging. By measuring the values of parameters in 
the subject of study, such as the speed of ants with and without food, variance in 
heading distribution, and pheromone deposition interval, realistic simulations are 
produced that allow researchers to test hypotheses about the behavior of the animals. 
 
The behavior of ants is only one example where individual interactions are important in 
understanding the global behavior of a system. Topics that have been investigated with 
individual models include economy, anthropology, sociology, linguistics, and ecology 
research on mammals, fish, birds, insects, bacteria, mixed ecosystems, and forests. 
Another example of an individual based model described later in this article concerns 
traffic flow. 
 
Individual-based models are interesting in that they allow investigating the effect of 
interactions among the elements of a system. However, the dynamical systems 
perspective can also provide insight when used to model the dynamics of higher level 
properties of a system, such as population size, in cases where classic, equilibrium 
based models are not applicable. Apart from stable equilibria, observed fluctuations of 
population dynamics have been explained using periodic cycles, quasi-periodic cycles, 
and chaos. An example of this is given by the population dynamics of the flour beetle. 
These have been shown to be subject to a chaotic regime. Using a nonlinear 
demographic model, the dynamics under laboratory conditions were first predicted, to 
determine when chaotic should be expected. Testing this prediction experimentally 
confirmed the transition to chaos.  
 
These results suggest that human intervention in ecological systems demands a firm 
understanding of the population dynamics, since the effects of actions can widely differ 
from expectations when chaotic population dynamics are mistakenly assumed to be 
approximately linear.  
 
3. Basic notions of dynamical systems theory 
 
In order to understand emergence and self-organization, it is necessary to study some 
basic notions of dynamical systems theory.  
3.1 Dynamical system  
 
Dynamical systems are systems that change over time. Only in systems that change over 
time can emergence and self-organization take place. All processes that can occur in 
nature can be described as dynamical systems, albeit usually very complex dynamical 
systems.  
 
3.2 State variable  
 
The state of a dynamical system can be described by a number of state variables.  
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3.3 Dimension  
 
The minimum number of variables that completely captures the state of the system is 
referred to as the dimension of the system. An example of a simple dynamical system is 
that of a pendulum that swings in a plane. In the case of the pendulum, the state 
variables are the pendulum’s position and its velocity. The pendulum is therefore a two-
dimensional system. 
 
Apart from the state variables, there can be other factors that can influence the behavior 
of dynamical systems. However, these do not change over time and are therefore not 
part of the system’s state.  
 
3.4 Control parameter  
 
These other factors are called the control parameters of the system. In the example of 
the pendulum, the control parameters are the length of the pendulum, the friction and 
the strength of gravity.  
 
3.5 Control law  
 
Finally, a dynamical system is governed by control laws. Control laws determine the 
next state of the system for any given state. In the pendulum example, the control law is 
determined by Newton’s second law of motion. The state variables of a dynamical 
system by definition give a complete description of the state of the system.  
 
3.6 Determinism  
 
Furthermore, in a deterministic system, the control laws always give the same successor 
state for any chosen state. Thus, there are no random influences, and the state of the 
system at any point in time completely determines the future behavior of the system. In 
real world systems however, it is generally impossible to determine the values of the 
state variables exactly, since this demands infinite precision of the measurements. In 
addition, the laws governing the system may be such that it is impossible to compute the 
future states of the system exactly, even if they are determined. This is the case in the n-
body problem for instance, for n ≥ 3. 
 
 
3.7 Non-determinism  
 
Systems in which there are random influences also exist. Such systems are called non-
deterministic or stochastic, and it is in general not possible to predict their future 
behavior exactly. For these systems, it is not possible to find a description with more 
state variables such that the system becomes deterministic. In other words, the non-
determinism is not caused by hidden state variables. However, very complicated 
deterministic dynamical systems will often be modeled as non-deterministic systems 
with fewer state variables, in which case the non-determinism is caused by hidden state 
variables. 
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In order to make a mathematical description of a dynamical system it is necessary to 
decide whether to model time as continuous, or as divided into discrete slices. Physical 
systems will generally be modeled using continuous time, but for simulation purposes it 
is useful to create computer models that work with discrete time. In the case of 
continuous time, the equation of any dynamical system can be written as follows: 
 

( )f , t=x x , (1) 
 
where x is the vector of state variables, f is the function that describes the behavior of 
the system and t is time.  
 
3.8 Differential equation  
 
This is a so-called differential equation. The notation with bold face for vectors and 
overdots for derivatives is standard in dynamical systems literature.  
 
3.9 Difference equation  
 
In the case of discrete time, the equation is as follows: 
 

( )t 1 tf , t+ =x x  (2) 
 
which is a difference equation. 
 
3.10 Autonomous dynamical systems  
 
The above equations are of the most general form. Many dynamical systems that are 
encountered in practice have control laws that are independent of time, so that the value 
of f only depends on the state variables xt. Dynamical systems of this kind are called 
autonomous dynamical systems. 
 
Example 3.10.1: Pendulum 
 
A pendulum can best be described in continuous time. Its state variables are its position 
u and its velocity v. The functions approximating its behavior for small angles are: 
u v

uv g bv
l

=

= − −
 (3) 

where g is the acceleration due to gravity, l is the length of the pendulum and b is a 
factor representing friction. It can be observed that these equations do not depend on 
time (the pendulum is therefore an autonomous dynamical system) and that the state 
variables occur only in linear combinations. 
 
3.11 Linear dynamical systems  
 
Equation 3 is a linear dynamical system. The advantage of linear dynamical systems is 
that they can be solved analytically. This means that expressions for its variables can be 
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found that depend only on time, and hence that the system’s state for any point in the 
future can be calculated directly. This is not generally true for non-linear dynamical 
systems, and it will be shown below that only non-linear dynamical systems can show 
emergent and self-organizing behavior. 
 
However, for now it is convenient to stick to the example of the pendulum in order to 
illustrate an important way of representing dynamical systems graphically.  
 
3.12 Phase plot  
 
This is by means of a phase plot of the behavior of the system. A phase plot is a plot of 
the state variables of a system against each other.  
 
3.13 State space (Phase space)  
 
The space of all possible system states is called the state space or phase space of the 
system, hence the name phase plot. The phase plot shows at a glance what paths connect 
the different states.  
 
3.14 Trajectories  
 
Such paths are called trajectories, and depict what states the system will pass through 
when starting in a given state. Unfortunately, many of the more interesting dynamical 
systems have more than two degrees of freedom, and their phase spaces are impossible 
to plot exactly. In these cases, projections of the phase space may provide insight into 
the system’s behavior. 
 
Example 3.14.1    Phase plots of the pendulum 
 
Examples of phase plots of the pendulum system are given in figure 1. In the leftmost 
frame, the phase plot of a strongly damped pendulum with a length of one meter is 
shown. Two trajectories are shown, beginning at different positions and velocities. The 
arrows indicate the direction in which the system evolves. Different trajectories can not 
cross in a deterministic system.  
 

 
 

Figure 1: Phase plots of the pendulum 
 

In the second frame, trajectories of a pendulum with equal length, but with less damping 
are shown. This shows the role a control parameter can play. Although the behavior of 
the system is different, it is not qualitatively different. All trajectories in the system still 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

ARTIFICIAL INTELLIGENCE – Dynamical Systems, Individual-Based Modeling, and Self-Organization - Edwin D. de Jong and 
Bart G. de Boer 

©Encyclopedia of Life Support Systems (EOLSS) 
 

converge towards a single point, where the pendulum is at rest in its lowest position. 
Such a point is called a point attractor of the system. The role of attractors in a 
dynamical system will be discussed in more detail below.  
 
3.15 Dissipative systems  
 
The damped pendulum is also an example of a dissipative system. Imagine a cluster of 
initial conditions, having a certain volume in phase space, and following this cluster 
over time. If the volume of the cluster decreases over time, the system is called 
dissipative. The criterion of dissipation is important because attractors are only present 
in dissipative systems. 
 
The physical interpretation of a dissipative system is that a certain quantity in the 
system (usually its energy) is dissipated from the system. In the example of the 
pendulum, dissipation is caused by friction; friction decreases the speed of the 
pendulum, and thereby shrinks the range of possible speeds and the range of possible 
locations of the pendulum. When friction is removed (which is physically impossible), 
the system’s behavior changes qualitatively. This situation is depicted in the rightmost 
frame of figure 1. Such a system is no longer dissipative and its trajectories become 
cycles.  
 
3.16 Bifurcation  
 
A change of the attractors due to a change of the control parameters of a system is 
called a bifurcation. The particular bifurcation of the pendulum system is not a very 
interesting one. As will be shown below, more interesting bifurcations take place in 
non-linear dynamical systems. 
 
- 
- 
- 
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