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Summary 
 
This article gives a biased overview of neural-network research. Neural networks are 
computation models, inspired by information processing in the brain. Two aspects of 
neural networks are emphasized: the ability to generate complex behavior from many 
simple processing elements and the property to learn from data.  
 
Emerging complex behavior is most prominent in classical neural networks like the 
Hopfield network and the Boltzmann machine. Techniques from statistical physics have 
been applied to understand their operation.  
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The learning capability of neural networks forms the basis of most practical applications 
of neural networks. In this context, neural networks have shifted from heuristic black 
boxes to advanced statistical tools. Learning can be interpreted as a statistical inference 
problem, which can be solved either using frequentist or Bayesian approaches.  
 
Neural networks have been looked at from many different viewpoints. The cross-
fertilization between neural networks and many other fields will continue to grow and 
improve neural networks, both as advanced statistical tools for solving practical 
problems and as computational models for understanding how the brain works.  
 
1. What are neural networks?  
 
The field of neural networks covers a large area ranging from theoretical neurobiology 
to statistical physics and machine learning. Covering in depth such a wide range of 
topics would be beyond the scope of this article, in which we prefer to give instead 
some insights into issues related to the history of the field, theoretical concepts that 
underpin the field, and then give an overview of more practical applications. There are 
many good textbooks available, covering much of the material in this review, see the 
references for details.  
 
What is it that ties such seemingly disparate areas of research together? In all these 
areas there is a common interest in the properties of a (possibly very large) number of 
relatively simple processing units (neurons/spin-particles/elementary computing units) 
when they are coupled together. It is the belief that the emergent phenomenon when 
such simple units are coupled together is capable of explaining such complex effects as 
intelligence, memory, magnetism and can provide a useful basis for machine learning 
and computation.  
 
In such an interdisciplinary field, neural networks can take on somewhat different 
meanings, and the demands or emphasis of the research are correspondingly different. 
Following Churchland and Sejnowski (and adding the “Physicist” viewpoint), we can 
loosely categorize the demand/complaint pairs of different researchers, based on this 
underlying neural-network research as  
 
The Neuroscientist 
 
Show me results of neuromodeling that help explain or predict experimental results. 
Non neuroscientists do not know anything much about neuroscience even though they 
are doing “neural modeling”. 
 
The Psychologist 
 
Show me results of neuromodeling that help explain or predict psychological functions 
and behaviour. 
 
Non psychologists do not know anything much about the results from psychophysics 
and psychology even though they are modeling psychological capacities and 
performance. 
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The Computer Scientist 
 
Show me results of neuromodeling that help understand the nature of computation and  
representation or that yield new ideas about these things. 
 
Non computer scientists do not know anything much about electrical circuits, 
mathematical analyses, or existing theories of computation. 
 
The Philosopher 
 
Show me results of neuromodeling that are relevant to philosophical problems 
concerning the nature of knowledge, the self and the mind. 
 
Non philosophers do not understand some of the useful, time saving, and agony-saving 
contributions of philosophers in constraining questions about how the mind works. 
 
The Physicist 
 
Show me results and insights from neuromodeling that demonstrate how the 
macroscopic behaviour of complex systems can be understood to be dependent on a 
compact description of the system. Non physicists do not know anything much about 
statistical mechanics and how to bridge the gap between a microscopic description and 
understanding the resulting macroscopic behaviour. 
 
We do not proceed here to attempt to unify these differing viewpoints. Indeed, this 
diversity of viewpoints is, in our opinion, a healthy feature. Our own work has been 
most closely associated with the “computer scientist” and “physicist” viewpoints. As we 
see it, the problem of making artificial machines endowed with some of the 
functionality of biological organisms (e.g.,visual processing of information) is so 
complex, and the a priori space in which to search for possible solutions so vast, that we 
must turn to those biological organisms and their specific functionality if we are to 
succeed in our goal. In so doing, we need to familiarise ourselves with relevant 
mathematical frameworks since, ultimately, we wish to find a mathematical description 
of the procedure. In spirit this is similar to David Marr's view of artificial intelligence, 
which relates artificial intelligence to coding specific biological functions. (See his 
article in Boden's Book and others therein for an introduction to different viewpoints on 
artificial intelligence and related philosophical issues). In concentrating on making an 
“artificial neural network” which is capable of information processing in a manner 
similar to the brain, there are some observations about the brain which highlight some 
of the differences to conventional computation (see Hertz, etal):  
 

 It is robust and fault tolerant. Nerve cells die every day without affecting its 
performance significantly 

 It is flexible. It can easily adjust to a new environment by “learning” – it does 
not have to be programmed in a standard computer language 

 It can deal with information that is fuzzy, probabilistic, noisy, or inconsistent. 
 It is highly parallel 
 It is small, compact, and dissipates very little power 
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Ultimately, we would like to be able to make a machine that can perform certain 
information processing tasks such as face or speech recognition that humans can do 
with consummate ease. The starting point here is that conventional approaches based on 
Artificial Intelligence have reached an impasse, since the task of formally specifying a 
task such as face recognition is either unclear or too complex to be handled in a 
conventional way.  
 
We split our review into the following main sections. The first, section (2) deals with 
the neural biological background that ultimately motivated the field. We then show how 
this motivated some of the earliest artificial neural network models in section (3).) The 
generalisation of such early models leads us into the realm of statistical physics in 
section (4). This subfield of neural networks focuses on the emergence of macroscopic 
behaviour from the detailed microscopic desciptions of neural networks. A particularly 
useful area of research has been the development of neural networks as advanced 
statistical models. In section (5) we review some of the progress that has been made in 
the machine learning community under the general banner of neural networks and in 
particular those developments in learning non-linear mappings parameterised as 
perceptrons. This section contains more immediate practical issues of neural networks 
and related methods. There is a wealth of material on this topic, and an introduction can 
be found in the references. More general and recent discussions on how to train models 
such as neural networks are treated in section (6), where we compare frequentist and 
Bayesian approaches. How neural networks have found commercial success in 
applications is outlined in section (7). Finally, we conclude in section (8) with a 
summary and outlook on where artificial neural networks might be heading in the near 
future.  
 
2. Neurobiology  
 
2.1 Neurons  
 
We follow our references in this overview of neurobiology. Neurons are the basic 
structural components of the brain. A neuron is an individual cell, specialised by 
architectural features that enable fast voltage changes across its membrane as well as 
voltage changes across neighbouring membranes. Brains are assemblies of such cells, 
and while an individual neuron does not see or reason or remember, brains do. How can 
we get from ion movement across cell membranes to memory or perception in brains. 
What is the nature of neuron-neuron connectivity and interactivity? What makes a 
clump of neurons a nervous system? Two ground-breaking discoveries in the nineteenth 
century established the foundations for a science of nervous systems. (1) Macro effects 
displayed by the nervous systems depend on individual cells, whose paradigm 
anatomical structure include both long tails (axons) for sending signals and treelike 
proliferation (dendrites) for receiving signals, see Figure 1. (2) These cells are 
essentially electrical devices; their basic business is to receive and transmit signals by 
causing and responding to electric current. Within the last few decades, an enormous 
amount has been learned about neurons: about their electrophysiology, microanatomy, 
connectivity and development. If we know so much about the fundamental microscopic 
aspects of the brain, neurons, surely we also have a good understanding of macroscopic 
aspects such as how the visual or motor system works. In fact, we do not. It could be 
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that we simply do not yet understand in enough detail how neurons work - ultimately, 
proponents of this bottom-up research approach contest that we will be able to 
understand large scale phenomena in the brain. 
 
However, the main argument of some theoretical neurobiologists is that, no matter what 
level of detail the individual neuronal aspects of the brain are understood, this is not 
sufficient to explain the complex large scale properties of the brain, such as visual 
awareness. Such researchers contend that such complex behaviours can only be realised 
when such neurons and coupled together, producing a dynamic, highly non-linear 
information processing system, the power and properties of which cannot be understood 
merely by the study of neurons in isolation. This approach is central to the field of 
computational neuroscience. This field aims for biological realism in computational 
models of neural networks which may, however, study at times relatively simple models 
to see if they are sufficient at qualitatively explaining emergent biological phenomena.  
 

 
 

Figure 1: schematic representation of two neurons and their connection point at the 
synaptic junction. The cell body receives (electrical) input along its dendrites. Provided 
that this combined input is high enough, a spike or pulse is transmitted along the axon, 
branching out to many (typically of the order of a thousand) synaptic junctions. These 

signals are then received by an afferent neuron along its dendrite. 
 
2.2 Simple Neuron Models  
 
The brain is composed of about 1011 neurons of many different types, a common class 
of which has the form depicted in Figure 1. Tree like networks of nerve fibre called 
dendrites are connected to the cell body or soma, where the cell nucleus is located. 
Extending from the cell body is a single long fibre called the axon, which branches into 
strands and substrands. At the ends of these are the transmitting ends of the synaptic 
junctions, or synapses to other neurons. The receiving ends of these junctions on other 
cells can be found both on the dendrites and on the cell bodies themselves. The axon of 
a typical neuron makes a few thousand synapses with other neurons.  
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The transmission of a signal from one cell to another at a synapse is a complex chemical 
process in which specific transmitter substances are released from the sending side of 
the junction. The effect is to raise or lower the electrical potential inside the body of the 
receiving cell. If the cell body potential of a neuron (after receiving inputs from its 
neighbours) reaches a threshold, a pulse or action potential of fixed strength and 
duration is fired, which is propagated along the axonal arborization to synaptic junctions 
of other cells. After firing, the cell has to wait for a time called the refractory period 
before it can fire again.  
 
McCulloch and Pitts in 1943 proposed a simple model of a neuron as a binary threshold 
unit. Specifically, the model neuron computes a weighted sum of its inputs from other 
units, and outputs a one or a zero according to whether this sum is above or below a 
certain threshold:  
 

i ij j i
j

n (t 1) w n (t) .μ
⎛ ⎞
⎜ ⎟+ = Θ −
⎜ ⎟
⎝ ⎠
∑  

 
Here ni is either 1 or 0, and represents the state of neuron i firing or no firing 
respectively at time t. Θ is the step function, Θ(x) = 1 if x ≥ 0 and Θ(x) = 0 otherwise.  
 
The weight wij represents the strength of the synapse connecting neuron j to neuron i. It 
can be positive or negative corresponding to an excitatory or inhibitory synapse 
respectively.  
 
Though individually simple, a collection of McCulloch-Pitts neurons forms a 
computationally powerful device. Indeed, a synchronous assembly of (sufficiently 
many) such neurons is capable of universal computation, programmable by choosing 
weights wij, and can thus perform any computation that an ordinary digital computer can 
do.  
 
This simple description differs from real neurons in some fundamental ways. 
 

 Real neurons respond to their input in a continuous way. However, the non-
linear relationship between the input and the output is a universal feature. A 
working hypothesis is that nonlinearity is essential, though not its specific form. 

 Real neurons perform a nonlinear summation of their inputs. 
 A real neuron produces a sequence of pulses, not a simple output level. 

Representing the  firing rate by a single number ni, even if continuous, ignores 
the possibility that pulse phase, the timing of individual “spikes”, not just the 
rate, encodes a significant amount of relevant information. 

 The amount of transmitter substance released at a synapse may vary 
unpredictably. 

 
A simple generalisation of the McCulloch-Pitts neuron which includes some of these 
features is 
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i ij j i
j

n (t 1) g w n (t) μ
⎛ ⎞
⎜ ⎟+ = −
⎜ ⎟
⎝ ⎠
∑  

 
where g is a continuous function. To take into account some of the stochastic effects, we 
could alternatively consider  
 

i ij j i
j

p(n (t 1) 1) g w n (t) μ
⎛ ⎞
⎜ ⎟+ = = −
⎜ ⎟
⎝ ⎠
∑  (1) 

where g is a function between 0 and 1, so that (1) represents the probability that neuron i 
fires in a unit time interval. 
 
In most applications of (classical) neural networks, the former interpretation of neurons 
is applied. That is, the output of each network is a deterministic (nonlinear) function of 
its inputs. This is then fed successively into other neurons, and the process repeated. We 
shall mainly deal with this approach in section (5). The stochastic case, in which we 
consider the output as representing the probability that the neuron fires, is more closely 
related to systems in statistical physics, and we shall deal with this more closely in 
section (4). The tools of statistical mechanics may be applied to analysing the properties 
of both kinds of deterministic and non-deterministic systems. Interestingly, the 
stochastic model of neurons is a special case of a wider class of statistical models 
known as graphical models. Graphical models were introduced in response to the failure 
of traditional expert systems to cope with uncertainty, and is currently a hot research 
area. 
 
- 
- 
- 
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