
UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

ARTIFICIAL INTELLIGENCE – Knowledge Based System Development Tools - John K.C. Kingston

©Encyclopedia of Life Support Systems (EOLSS)

KNOWLEDGE BASED SYSTEM DEVELOPMENT TOOLS

John K.C. Kingston
AIAI, University of Edinburgh, Scotland

Keywords: Knowledge based systems, programming tools, Artificial Intelligence

Contents

1. Introduction
2. KBS Tools: Functionality
2.1 Production rules; forward and backward chaining
2.2 Object oriented programming
2.3. Hypothetical reasoning
3. KBS Tools: Classification
3.1. Classifying KBS tools: Shells
3.2 Classifying KBS Tools: Procedural Languages
3.3 Classifying KBS Tools: Toolkits
3.4 Classifying KBS Tools: Specialised tools
3.5 Classifying KBS tools: ART-like and KEE-like
4. Selecting a KBS tool
4.1 Selecting KBS: Features of KBS tools
5. Selecting KBS Tools
5.1 Selecting KBS: Features of the Problem
5.2 Selecting KBS: Phase of Development
5.3 Selecting KBS: Organisational policies and capabilities
6. Conclusion
Appendix
Glossary
Bibliography
Biographical Sketch

Summary

Knowledge based system programming tools provide a range for facilities for
representing knowledge and reasoning with knowledge. The purpose of these facilities
is to allow knowledge based systems to be constructed quickly. This article categorises
knowledge based system development tools, supplies examples of developed KBS
applications, and discusses the features to consider when selecting a tool for a project.

1. Introduction

Artificial Intelligence tools are almost exclusively software tools; programming
languages or program development environments. For Artificial Intelligence is a
software-based discipline; despite the popular image of AI research focusing on self-
aware robots or autonomous vehicles, hardware problems for artificial intelligence
rarely go beyond the integration of motors, gears and video cameras. As the name
suggests, the main research topic of Artificial Intelligence is the development of

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

ARTIFICIAL INTELLIGENCE – Knowledge Based System Development Tools - John K.C. Kingston

©Encyclopedia of Life Support Systems (EOLSS)

intelligence, and all existing approaches to modelling, developing, representing or
producing intelligence are software-based.

In practice, the development of intelligence - building a machine that can think for itself
- has proved difficult. As a result, Artificial Intelligence research has (broadly speaking)
divided into two approaches: the "cognitive science" approach to developing
intelligence, and the "knowledge engineering" approach to replicating the results of
intelligent behaviour. The issue that divides them has been whether an intelligent
machine must "think" like humans, or merely use the same knowledge as humans to
produce the same results.

The "cognitive science" approach to Artificial Intelligence has attempted to develop
intelligent machines by replicating biological mechanisms of human thinking - these
"neural network" techniques are generically referred to as a connectionist approach - or
by using "genetic mutation" of software in order to develop more 'intelligent' programs
or "artificial life", which is usually referred to as an evolutionary approach. It's difficult
to determine whether these techniques can produce truly "intelligent machines", largely
because of difficulties in defining and measuring intelligence. Dictionary definitions
define intelligence in terms of possessing 'understanding' or 'knowledge', but provide no
way of measuring these qualities. At a deeper level, the question of what makes a
human or a machine "intelligent" is not only difficult to answer, but also emotive; if a
machine truly thinks like a human, is it intelligent? Does it deserve human rights? Is it
acceptable to manufacture a machine that is more intelligent than the programmer?

Can a machine 'evolve' intelligence without intervention from its creator? The answer to
the last question is currently 'no' (all evolutionary algorithms need some guidance, or
modifications of input parameters, before they can produce a good result), but the
remaining questions are offered as an exercise for the reader; recommended reading
might include the works of Isaac Asimov and Arthur C. Clarke.

The proponents of the "knowledge engineering" approach to Artificial Intelligence have
chosen to tackle the question of defining intelligence by taking one of the key words
from the dictionary definition - 'knowledge' - and choosing to define this instead. In
order to do this, they have drawn on several psychological theories of human thinking,
as well as on philosophy, linguistics and mathematics. The aim has been to understand
what constitutes "expert knowledge" - that is, the knowledge of someone who is highly
experienced and highly skilled at performing a particular task - in order to capture that
same knowledge and represent it within a computer program, so that given a particular
problem to solve, the computer program could produce the same outputs as the expert.
The emphasis in the "knowledge engineering" approach has shifted away from
replicating the mechanisms of human intelligence to replicating the outputs of
intelligent humans. Since knowledge is generally represented within these programs
using structured collections of "symbols" (words, concepts, ideas, and values), this
approach is sometimes referred to as a symbolic approach to Artificial Intelligence.

The distinction between the "cognitive science" and "knowledge engineering"
approaches is reflected in the tools that are available to support these approaches. Figure
1 shows a hierarchy that encapsulates the major distinctions between tools. Since the

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

ARTIFICIAL INTELLIGENCE – Knowledge Based System Development Tools - John K.C. Kingston

©Encyclopedia of Life Support Systems (EOLSS)

"knowledge engineering" approach requires considerable effort in collecting and
analysing knowledge before it can be programmed, a selection of "knowledge
engineering" support tools are also identified.

The purpose of this article is to describe and discuss "knowledge engineering"
programming tools - i.e. tools for programming "expert systems" or "knowledge based
systems" (KBS). Other articles in this Encyclopedia cover knowledge engineering
support tools and the "cognitive science" programming tools. The remainder of this
article will discuss differences between tools for KBS programming, with illustrative
examples to show the sorts of tasks that each type of tool can tackle.

Figure 1: Partial taxonomy of tools for Artificial Intelligence

2. KBS Tools: Functionality

Knowledge based systems consist of three main components: the knowledge base,
which consists of facts or information about "the world", plus information about
permitted inferences on these facts; the inference engine which enables inferences to be
drawn from the knowledge base to generate new facts and information; and the user

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

ARTIFICIAL INTELLIGENCE – Knowledge Based System Development Tools - John K.C. Kingston

©Encyclopedia of Life Support Systems (EOLSS)

interface. For example, a KBS to diagnose hardware faults in computers might contain
facts about computers and how they are assembled and details of inferences that can be
drawn from certain symptoms (e.g. "If the power light is on, then the electrical supply is
not faulty"). The idea behind a KBS tool is that it supplies an inference engine,
alongside frameworks for entering facts and information about the world, and
(sometimes rudimentary) facilities for building a user interface. A KBS programmer is
then only required to input facts and information into the knowledge base, and to
specify permitted inferences for the inference engine, in order to construct a knowledge
based system.

The inference functionality provided by a KBS tool is the prime determiner of the
contents of the knowledge base. KBS tools typically provide one or more of the
following programming techniques:

 Production rules (forward chaining);
 Production rules (backward chaining);
 Object oriented programming.

In addition, other inference facilities may be available, including access to functional or
procedural programming. The one facility that is present in some KBS tools that is
rarely found in any other tools is the ability to perform hypothetical reasoning.
Each of these techniques/facilities will be described briefly below.

2.1 Production rules; forward and backward chaining

Production rules are statements of the general form "IF A and B and C are true then D is
true and action E must be taken". Their name comes from their capability to "produce"
new information from existing information. Within KBS tools, the conditions of the rule
(A, B and C in the above example), also called the left hand side of the rule, are
represented as patterns that can be matched against a "working memory" of facts or
objects; if the patterns are matched, the rule can be "fired", allowing the deductions and
actions (the right hand side of the rule) to be carried out. For example, a rule that
restricted nightclub admission to the "young, free and single" might appear as follows in
a KBS tool:

(rule young-free-and-single
IF
(object? person (is-a person) (age Page (test (< Page 25))) (marital-status single) (major-
commitments none))
THEN
(assert (? person nightclub-admission yes))

The fact that a person has no major commitments may have been deduced by another
rule; the fact that the person can be admitted to a nightclub may trigger further rules.
This process, where the output of one rule matches and triggers the conditions of
another rule, is known as rule chaining.

Chaining can occur forwards or backwards; it turns out that the direction of rule
chaining can have a big effect on the efficiency of a knowledge based system, so this

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

ARTIFICIAL INTELLIGENCE – Knowledge Based System Development Tools - John K.C. Kingston

©Encyclopedia of Life Support Systems (EOLSS)

distinction is worth describing in detail.

Forward chaining rules start with a set of known data, and try to match the conditions of
rules against that data. Several rules may have all their conditions matched; some rules
may have their conditions matched in several ways by different combinations of
information. In most KBS tools that support forward chaining, one matched rule is then
fired, the "working memory" of information is updated, and the matching process takes
place once again. This continues until no more rules can fire, or until a sufficiently good
solution is found. Forward chaining is a good approach when a lot of data has already
been collected. It is also the only feasible approach for synthetic tasks such as planning
or configuration problems, where there are a near-infinite number of possible solutions.
However, the repeated matching process requires the conditions of rules to be compiled
into a network, known as the "RETE network", if the rules are to run at any reasonable
speed. This places some restrictions on the conditions that can appear in a production
rule in a forward chaining system; for example, attribute names (such as age and
marital-status in the example above) may not appear as variables in a rule.

Backward chaining rules start with a conclusion that needs to be proved, and tries to
find existing information that matches that conclusion, or rules that could deduce that
conclusion. When suitable rules are found, one such rule is selected, and the conditions
of that rule become sub-goals that must now be proved. The system then searches for
rules capable of producing these sub-goals. In other words, by performing pattern
matching between goals and the right hand side of rules, backward chaining will
traverse a 'chain' of rules in the opposite direction to forward chaining. Backward
chaining concludes when all the sub-goals and sub-sub-goals of the final conclusion are
proved. If it finds no rules (or existing information) to prove a particular sub-goal, it
'backtracks' to the last point at which it had a choice of rules, and chooses another rule.

Backward chaining is especially good where there is not much existing information, and
the information has to be gathered by asking the user. Using the example rule given
above, backward chaining might ask a person their age; if the answer is over 25,
backward chaining would not ask any further questions about marital status or major
commitments, unless they were required by another rule. Backward chaining is
therefore good at avoiding unnecessary questions.

Backward chaining is also good for tasks where there are many more possible data than
conclusions. Diagnostic tasks are a good example of such tasks, and of the many
commercial KBS applications that carry out diagnostic tasks, nearly all were developed
using backward chaining rules.

2.2 Object oriented programming

Object oriented programming is based on two fundamental assumptions:

 Information about a single "object" in the world should be gathered together in a
single data structure;

 It is important that a program preserves the structure of relationships between
objects.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

ARTIFICIAL INTELLIGENCE – Knowledge Based System Development Tools - John K.C. Kingston

©Encyclopedia of Life Support Systems (EOLSS)

Based on these assumptions, an object oriented program consists of a collection of
objects with relationships between them; a common relationship is the class-subclass
relationship, also known as is-a, an inheritance relationship, or a taxonomic
relationship. The programming procedures are all attached to particular objects; for
example, a procedure that determined whether someone was "young, free and single"
would be attached to the person object, and (by inheritance) to every instance of the
person object (i.e. every person). Procedures are invoked by sending appropriate
messages to objects; so if an object representing a nightclub wanted to determine
whether a person should be admitted, the "nightclub" object (strictly speaking, an
instance of the nightclub object) would send a message to the "person" object, asking it
to evaluate whether it was young, free and single. The "person" object would run its
"young free and single" procedure and return a yes/no value, allowing the "nightclub"
object to proceed with its reasoning about admission.

Object oriented programming is useful where the structure and relationships between
objects is important to problem solving (for example, in a classification task).

2.3. Hypothetical reasoning

Hypothetical reasoning requires that certain facts are assumed to be true; that the basis
of this assumption is known; and that all further reasoning based on these facts is also
known to be assumption-based. The standard approach to assumption-based reasoning
in knowledge based systems is to use an "assumption-based truth maintenance system"
(ATMS). In practice, this equates to a mechanism whereby "possible worlds" are
created; in each "possible world", some facts take on different values. Reasoning can
then take place to deduce the consequences of these altered values. Hypothetical
reasoning is very useful for implementing problems involving search (which is common
in Artificial Intelligence) or problems requiring prediction of future values.

In many KBS tools, "possible worlds" have not been implemented, however, because of
memory restrictions. A few KBS tools use an alternative truth maintenance system
known as "logical dependency", in which facts are tagged as being dependent on
continued existence of other facts. Unfortunately, logical dependency doesn't work well
with objects. Logical dependency is useful for supporting systems where a user is asked
a series of questions, but the user might want to change an answer to an earlier question.

3. KBS Tools: Classification

In the late 1980s and early 1990s, when commercial interest in knowledge based
systems was at its peak, approximately 200 KBS tools were commercially available.
Many are still available but are no longer described as KBS tools for marketing reasons;
common alternative terms include "intelligent decision support tools", "enterprise
support tools" or "knowledge management tools". Close reading of the marketing
descriptions often reveals that the tools can support "business logic" or the
"implementing of business rules", which appears to be the acceptable description of
KBS tools in a business world that considers "artificial intelligence" to be relevant only
to the computer games industry. For the purposes of this article, all tools that are
capable of being used to develop knowledge based systems - whatever they are called in

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

ARTIFICIAL INTELLIGENCE – Knowledge Based System Development Tools - John K.C. Kingston

©Encyclopedia of Life Support Systems (EOLSS)

their marketing literature - will be considered as "KBS tools".

In order to be able to discuss and describe such a large number of tools, it is necessary
to divide them into subcategories; but since these tools differ in many ways, such as
inference mechanisms, flexibility, portability, and ease of use, what are the most
important distinguishing criteria?

When a project was carried out to develop a KBS to support the selection of KBS tools
(see references), knowledge acquisition suggested that the most useful dimensions for
classification of KBS tools are price, functionality and required hardware platform. It
also appeared that all of these are closely related (based upon the observation that
additional functionality usually comes at additional cost, and requires more powerful
hardware). Surveys of previous attempts to classify KBS tools suggest that most authors
use a broadly similar classification; for example, one author groups the products into
three main categories based primarily on functionality, which also happen to differ
markedly in the hardware platforms on which they are available. Another author has a
similar classification, with the addition of a distinction between toolkits - KBS tools
offering multiple programming techniques - with "closely coupled" functionality (where
the multiple techniques can be mixed and matched at will) and "loosely coupled"
functionality (which consists of a collection of tools or languages with a common
repository). While the power of hardware platforms has increased greatly since many of
these tools were produced, thus greatly reducing the need for specialized hardware for
more powerful toolkits, it is still helpful to classify KBS tools according to these three
attributes.

Using these three attributes, KBS tools can be classified into one of the categories
described below. N.B. Where particular tools are named, some details about the current
vendors of these tools can be found at the end of this article.

3.1. Classifying KBS tools: Shells

Shells are the smallest and simplest of all KBS tools. They were generally designed to
run on the PCs available in the late 1980s (8086s or 286s, with kilobytes rather than
megabytes of RAM); a few were designed to run on Macintosh PCs rather than IBM-
compatible PCs. Their price was comparatively low, typically less than 2000 Euro.
They offer only a single technique for programming KBS (usually production rules,
chaining forward or backward). Their rules often resemble natural language more
closely than the rules of other KBS tools: for example, the following is a rule from VP-
EXPERT (taken from "VP-EXPERT Examples,
(http://www.cis.ysu.edu/~john/824/ex824.html "):

RULE measles

IF temp_range = very_high AND spots = yes AND inoculated <> yes
THEN diagnosis = measles
DISPLAY ''Your very high temperature and spots indicate a case of measles"
BECAUSE ''Very high temperature and spots usually indicate measles (unless the
patient has already been inoculated for it) "

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

ARTIFICIAL INTELLIGENCE – Knowledge Based System Development Tools - John K.C. Kingston

©Encyclopedia of Life Support Systems (EOLSS)

Shells have been the most widely used tools in KBS development, probably because of
the low cost of software and hardware, the ease of learning to program rules such as the
one above, and the widespread availability of low-specification PCs over a long period.
On the negative side, shells are more restrictive in the types of tasks that they can
undertake. Memory constraints and the lack of certain knowledge representations (such
as objects) means that more complex knowledge-based problems such as planning or
design problems may not be able to be handled with these products.

Shells can be broken into two further categories; Rule Based Network Shells and Pattern
Matching Shells. Rule based network shells are the most restrictive type; their rules
must contain only a single conclusion, with the result being the rules effectively form a
decision tree. The usual inference method in these shells is backward chaining.
Examples of rule network shells include CRYSTAL or VP-EXPERT.

Pattern matching shells are usually less restrictive. Rules can contain variables, with
forward or backward chaining provided (although usually not both). The main feature of
this classification is the pattern-matching network present in the tools. This network is
designed to speed up the inference process. Examples of commercially successful
pattern matching shells include Xi Plus and Savoir.

It should be noted that at the time of writing, many shells are no longer sold or
supported commercially; the surviving shell vendor companies have generally moved
towards offering "web-based technology solutions" or "information management"
solutions. Some likely sources of shells are given at the end of this article.

A KBS application developed using a shell

A good example of a KBS application developed using a shell is "Latent Damage Law -
the Expert System", developed using CRYSTAL by Mason's solicitors. This system
guides users through the complexities of UK legislation covering claims for damages
that are discovered outside the period of normal contract law (for example, faults in
buildings that do not manifest for fifteen or twenty years). CRYSTAL was a suitable
tool for this application because legislation can be represented adequately as a set of
production rules, assuming that expert opinion is available to assign values to terms
such as "reasonable time" and "sufficient notice". This system can be obtained by
purchasing a book describing the system's development; a disc is included with the
book.

-
-
-

TO ACCESS ALL THE 27 PAGES OF THIS CHAPTER,
Visit: http://www.eolss.net/Eolss-sampleAllChapter.aspx

https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-44-03

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

ARTIFICIAL INTELLIGENCE – Knowledge Based System Development Tools - John K.C. Kingston

©Encyclopedia of Life Support Systems (EOLSS)

Bibliography

G. Anderson, A. Casson, A. Macintosh, R. Rae, B. Gleeson, and S. Carter (1996). FORMATION:
Knowledge-Based Layout of Classified Telephone Directories. In Applications and Innovations in Expert
Systems IV, Proceedings ofBCS Expert Systems '96, Cambridge, UK. [More details on the FORMATION
system]

J. L. Alty. Expert system building tools (1989). Topics in Expert System Design. [An early survey of KBS
tools]

P.W.H. Chung and J. Kingston (1987). State of the art knowledge based system toolkits. Technical Report
AIAI-TR-54, AIAI. www.aiai.ed.ac.uk [More details on top-range toolkits]

J. de Kleer (1986). An assumption based truth maintenance system. Artificial Intelligence, 28. [Detailed
description of assumption-based truth maintenance]

M. Davies and K. Owen (1990). Personnel Selection Screening: Graduates for Management. HMSO UK.
Part of the Department of Trade and Industry's Expert System Opportunities compilation. [Description of
the GASS system]

E. Friedman-Hill (1999). Jess: The Java Expert System Shell, herzberg.ca.sandia.gov/jess/. [Description,
manual, and downloadable files for JESS]

E. Feigenbaum, P. McCorduck, and H.P. Nii (1988). The Rise of the Expert Company. Macmillan. [A
readable review of KBS from a management viewpoint. Includes details of the Authorizer's Assistant
project]

C. Forgy (1982). Rete: A fast algorithm for the many-pattern/many-object pattern-match problem.
Artificial Intelligence, 19(1). [The definitive description of the RETE algorithm]

C. Hall (1997-98). Intelligent Internet Systems: Parts 1 and 2. Intelligent Software Strategies [Surveys of
recently released Internet-capable KBS tools]

R. Inder (1987). The State of the ART. Technical Report AIAI-TR-41, AIAI. [Description of Inference
ART]

R. Inder (1999). CAPE: Extending CLIPS for the Internet. In Research and Development in Intelligent
Systems XVI: Proceedings of ES99, the 19th SGES International Conference on Knowledge Based
Systems and Applied Artificial Intelligence, Peterhouse College, Cambridge. Springer-Verlag.
[Description of CAPE]

L. Johnson and E. Keravnou (1985). Expert Systems Technology: A Guide. Abacus Press, Cambridge,
Mass. 02139. [General reference to early KBS applications, including MYCIN, INTERNIST and
CASNET]

P. Klahr, J. Bak'in, F. Dashiell, J. Dzierzanowski, B. Gokhman, G. Hudkins, L. Koff, J. Mela, C.
Nishiyama, L. Piketty, B. Ramesh, and L. Miller (1987). The Authorizer's Assistant: A Large Financial
Expert System Application. In Proceedings of the Third Australian Conference on Applications of Expert
Systems, pages 11-32, Sydney, Australia. Invited Keynote Paper. [Description of the Authorizer's
Assistant from a technical/academic viewpoint]

P. J. Kline and S. B. Dolins (1989). Designing expert systems : a guide to selecting implementation
techniques. Wiley. [A book that contains many "rules of thumb" to help in designing KBS and selecting
KBS tools]

C MacNee (1992). PDQ: A knowledge-based system to help knowledge-based system designers to select
knowledge representation and inference techniques. Master's thesis, Dept of Artificial Intelligence,
University of Edinburgh. [Describes the design and development of the PDQ system]

C. J. Price (1990). Knowledge Engineering Toolkits. Ellis Horwood. [An early survey of available KBS
toolkits]

R. Power, S. Reynolds, J.K.C. Kingston, I. Harrison, A. Macintosh, and J. Tonberg (1997). Expert
Provisioner: A Range Management Aid. In Applications and Innovations in Expert Systems V,
Proceedings of BCS Expert Systems '97, Cambridge, UK. [Details of the Expert Provisioner system]

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

ARTIFICIAL INTELLIGENCE – Knowledge Based System Development Tools - John K.C. Kingston

©Encyclopedia of Life Support Systems (EOLSS)

P.Capper, R.E. Susskind, and Lord Justice Neill (1988). Latent Damage Law - the Expert System.
Butterworths Law. ISBN: 040602362X. [Details of the Latent Damage Law system. The system itself is
included with the book.]

S. Robertson and J. Kingston (1997). Selecting a KBS Tool using a Knowledge Based System. In
Proceedings of the Joint 1997 Pacific Asian Conference on Expert Systems / Singapore International
Conference on Intelligent Systems (PACES/SPICIS '97), Singapore. [Description of a project to produce a
KBS to help with KBS tool selection]

J. Rothenberg (1989). Expert system tool evaluation. Topics in Expert System Design. [A survey of KBS
tools]

A. C. Stylianou, R. D. Smith, and G. R. Madey (1995). An Empirical Model for the Evaluation and
Selection of Expert System Shells. Expert Systems with Applications, 8(1): 143-156. [A proposed method
for selecting KBS tools]

Biographical Sketch

John Kingston is a Senior Informatics Research Fellow in the Artificial Intelligence Applications
Institute (AIAI), which is a part of Centre for Information Systems and their Applications, an institute
within the Division of Informatics at the University of Edinburgh. After graduating from the University of
Durham with a B.Sc (Hons) in Psychology, he completed a Master of Science in Knowledge Based
Systems at the University of Edinburgh in 1986.

In his 15 years at AIAI, John has been involved in AI work with various companies and organizations,
ranging from the UK Health and Safety Executive to the US Air Force and from Unilever to the
University of Edinburgh. The key to the success of John's work has been his use and application of the
CommonKADS methodology for knowledge analysis and KBS design. Recently, John's interests have
moved to applying a generalised version of the CommonKADS approach (known as multi-perspective
modelling) to knowledge management, via the capture and effective representation of corporate
knowledge assets. John's research interests include techniques for capturing knowledge and modelling
knowledge, methods for distributing knowledge (particularly intelligent Internet-based software), and the
development of real-world applications which verify and exemplify all the aforementioned techniques.

