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Summary 
 
Memory is a reflection of who we are, how we understand our environment and how we 
react to it. The processes of loading new memories, retrieving and adapting them - are 
foundational to learning, and are done by way of association rather than by scanning 
memories serially. New input leads to the recall of corresponding memories; similar 
inputs are associated with each other and with similar memories.  
 
Associative learning concerns association between input and extant memory traces, and 
the modification of these existing traces. Computational modeling of memory allows 
researchers to replicate processes that are only partially known to attempt to fill in gaps 
in understanding. Such models hold the potential to increase our comprehension of 
disease, develop better education and training methods, and create more human-like 
artificial intelligence. Neural networks have, to date, proven the most applicable 
computational models in this area. The field of Neural Networks places particular 
emphasis on associative learning to explain how the human brain may work.  
 
This chapter summarizes prominent models describing how this learning occurs, 
typically using neural network modeling. By way of background, we start with 
historical works of Turing, and Hebb, culminating with current models.  
 
1. Introduction 
 
The field of neural networks involves mathematical and computational network models, 
where nodes represent neural cells and their weighted connections represent the 
synapses connecting them. Updating the connections is considered learning; and, 
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learning algorithms differentiate the various neural network models. The goal of neural 
networks is to provide functional models describing intelligence; and they are 
frequently used as the intelligent component of larger, binary computational systems for 
engineering. Ultimately, “Super-Turing” neural networks, those that are analog and 
recurrent, are like other neural nets - non-symbolic, semi-parametric and learn from 
their environment. A binary, Turing system can associate symbols, but is unable to 
make associations at a sub-symbolic level. Super-Turing neural nets are capable of sub-
symbolic associations giving them a greater ability to achieve associative learning and 
are thus much closer to the way our brains may work. 
 
British mathematician Alan Turing (1912-1954) pioneered the field of computational 
intelligence. In 1936 as an undergraduate student, he created a model describing how 
humans calculate basic mathematical operations by following a series of small steps, 
that was later termed an ``algorithm.” It was Turing’s innovation to separate the 
problem itself from the specific input data - focusing instead on the steps designed to 
solve it. Another of Turing’s significant innovations was the use of external memory to 
hold information for calculations. Over the years, Turing’s model, known as the, 
“Turing machine,” has become the foundation for virtually all computers. 
 
Turing suggested that intelligence requires the ability to learn (and be creative) rather 
than mechanically follow commands; Turing himself refers to the Turing machine as a, 
“non-intelligent” model. Turing believed that in the future, machines, like people, 
would have the power to learn, be able to adapt to their environment and to be 
intelligent. His thoughts correlate closely with the Super-Turing computational model, 
which mathematically encompasses all adaptive and analog machines (Siegelmann, 
2013, 1995). 
 
Turing had a particular interest in mathematically describing the brain. In 1948, he 
introduced a mathematical structure, he called “unorganized machines” – the earliest 
conception of an adaptive neural network: The model consisted of a general graph of 
binary nodes (representing neurons) and interconnecting edges that followed a 
converging training procedure. Turing, presaging some of today’s latest understandings 
of brain processes and learning, suggested that a baby starts with semi-random brain 
connectivity that becomes increasingly organized with experience and learning. His 
pioneering adaptive neural networks, like all subsequent neural networks, are included 
in the Super-Turing paradigm. Super-Turing computation was named in Turing’s honor 
as a way of advancing computational intelligence models from static (the program is 
supplied) and binary (memory stores 0-1 bits only) - as in the Turing machine, to 
adaptive (program can learn and adapt to changing conditions) and continuous (memory 
can store continuous values like brightness and depth) computational intelligence as in 
the Super-Turing model. 
 
In 1949, Donald Hebb (1904-1985), a Canadian psychologist, suggested a 
computational rule of associative learning based on the organization of the nervous 
system (Hebb,1949). Hebb’s postulate, still frequently used in neurobiological modeling, 
proposes that neurons firing repeatedly in close temporal proximity have causal or 
semantic connections, and that the synaptic connection between them is strengthened by 
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biological processes as a response to the simultaneous firing. This rule has been stated 
as “fire together, wire together.”  
 

 
 
 
 
 
 
 

Figure 1. A mathematical way to write the Hebb rule is as follows: If x  and y  are two 
binary neurons (either in 0 or 1) with a joint synapse with strength

xyw  then the synaptic 
strength can change based on the joint firing of the two neurons, according to the 

difference: ( ) ( ) ( )1   xyw t x t y tμΔ + =  where μ is a learning rate parameter and the value 

( ) ( )x t y tμ can be positive only when both x  and y  fire at time t . 
 
The Hebb postulate is the foundation of the modern computational learning rule used 
most frequently in modeling biological neural networks: The so called “STDP learning 
rule” (Spike Timing Dependent Plasticity) describes complex biological processes that 
strengthen connections between neurons that fire at approximately the same time. While 
the STDP learning rule is very similar to the Hebb rule, the main difference is that the 
STDP puts emphasis on which neuron fired earlier and which fired later, and the 
connection is strengthened only in this direction. While the details known today and 
used in describing the STDP rule are far more sophisticated than those known in the 
1940’s, the basic principles are very similar. Current science considers STDP part of the 
explanation of brain function. The influential work explaining this model appears in 
(Markram et al, 1997). 
 
Following, we will discuss influential models of associative learning, which connect 
aspects of math, biology, and psychology. 
 
2. Memory as an Attractor System 
 
The Theory of Dynamical Systems is a mathematical field that presents equations that 
govern the temporal evolution of values of an interacting set of variables. This field has 
been used to explain various biological and social phenomena, e.g., AIDS, 
epidemiology, heart arrhythmia, schizophrenia, social obesity; and it has been given rise 
to well known scientific subfields such as chaos theory, complex systems, and network 
theory. Neural networks can also be viewed as particular types of dynamical systems 
where the interacting variables are the neurons.  
 
Dynamical systems are called “dissipative” when their temporal evolution goes to 
particular repeating areas in their phase space. These areas, which act much like lakes 
that collect the flow from surrounding rivers, are called attractors.  
 
While the processes of encoding, recalling and adapting memories are not fully 
understood, the memory system, due to its ability to store and then retrieve different 
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memory traces, is frequently modeled by dissipative neural networks, where the 
attractors represent different memory traces: When input stimuli is presented, the brain 
reaches a constant temporal-spatial firing, which represents a particular associated 
memory trace. Similarly, in an attractor based dynamical system, the inputs belong to 
different basins of attraction, and the system will flow to the attractor representing the 
input’s basin. Following are prominent models of attractor memory that allow for 
associative learning.  
 
2.1 The Hopfield Model and Basic Generalizations: 
 
John Hopfield introduced what came to be known as the Hopfield network in 1982 
(Hopfield, 1982). The Hopfield net is an approach to modeling memory – a content 
addressable system with binary threshold nodes. The network consists of binary units 
connected in symmetric connections: Thus, if neuron <a> is connected to <b> with 
weight strength <w>, also neuron <b> will be connected to neuron <a> with the same 
strength <w>. The original use of the Hopfield network was as an “auto-associative 
memory” where inputs (ideally) retrieve from memory the one item that most resembles 
them. To accomplish this, the system works in two modes (also called stages): First, 
loading of memory (consolidation): Memory items are presented to the neurons, 
connections among the neurons are set so the system will remember them and they will 
become its attractors. In the second mode, partial or noisy inputs that resemble already 
loaded memory items are presented to neurons in the expectation of recalling the full 
memory based on the partial information. During this process, neural values (not the 
values of their connections) change until they reach convergence in firing. The Hopfield 
network is not a perfect description of the brain processes it seeks to model for a 
number of reasons: First, the number of memories that can be stored is very small and 
dependent on the input dimension; second, biologically - the brain is not a symmetric 
network; third, the Hopfield network saturates quickly and then may converge to other 
memory items, which are similar but were not intentionally loaded in the first stage.  
 
Since its inception, many improvements have been incorporated to make the Hopfield 
network a bit more biologically correct or better as an associative memory system. One 
such work was suggested in (Kosko, 1988), where memory is improved from being only 
auto-associative (remember the self) to have hetero-association where inputs and 
outputs can be different. 
 
2.2. The Grossberg Network 
 
Grossberg and colleagues introduced a family of networks, which are based on 
continuous time updating dynamical systems (Cohen and Grossberg 1983). They assert 
that their networks are a super-set of the Hopfield network in terms of presenting other 
dynamical flows in addition to going to attractors such as oscillatory behavior and bi-
directional memory. These networks were applied by Grossberg and colleagues to 
explain some principles appearing in top-down attention processes and other more 
complex paths for the retrieval of memories.  
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2.3. Localist Attractor Network (LAN) 
 
In 2001, Zemel and Mozer introduced (Zemel and Mozer, 2001) a layered network 
model where the attractors themselves are neurons in a higher layer above the dynamic 
part of the neurons where convergence occurs. This way, spurious attractors do not exist 
and the system can load as many attractors as needed. The resultant model is a more 
reliable memory with higher capacity.  
 
2.4 Chaos Based Models 
 
Another line of work suggested that convergence in neurons and the neural system is 
not necessarily to a fixed point attractor or attractors of a repeating pattern (“limit 
cycle”), but rather will have chaotic flow or go to a chaotic attractor. While functionally, 
it is not necessarily the case that chaotic memory systems are richer in abilities than 
ones that flow to simpler attractors, this sub-field is interesting from a mathematical 
point of view, and possible connections to biology, most prominently the limbic system, 
were suggested as well (Kaneko, 1990; Aihara, 1994; Kozma and Freeman, 2001; 
Kaneko and Tsuda, 2003).  
 
2.5 Kernel Associative Memory (KAM) 
 
KAM is a network model introduced by Nowicki and Siegelmann in 2010 (Nowicki and 
Siegelmann, 2010). The model combines attractor dynamics, but it is far more practical 
than the Hopfield and other models described above. The model includes an input space 
composed of continuous valued vectors, rather than only binary ones, providing the 
potential of representation of real world, analog information like colors and brightness. 
The number of attractors in the model is independent of the input dimension as in the 
LAN (and is thus practically infinite unlike the very bounded number of attractors in the 
Hopfield and similar networks). 
 

 
 

Figure 2. KAM transfers from observable (real) space to storage in internal (neural) 
high-dimensional space via kernel functions: both loading and retrieval are simple. 
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Nomenclature  

LAN : Localist Attractor Networks  
RAN : Reconsolidation Attractor Network  
ReC : Memory Reconsolidation  
ReKAM : Reconsolidation Kernel Associative Memory 
SOM : Self Organizing Maps  
STDP : Spike Timing Dependent Plasticity  
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