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Summary 
 
Kernel models are a method for introducing nonlinear preprocessing to linear models. A 
kernel function determines a feature space called a reproducing kernel Hilbert space. The 
solution of an optimization problem with kernel models is expressed as a linear 
combination of given examples thanks to the representer theorem. This means that no 
explicit feature vectors are required and hence kernel models are applicable to even 
sequences or graphs. The first half of this chapter introduces the readers to the 
fundamentals of kernel models such as the kernel trick and the representer theorem. 
 
The most successful application of kernel models is support vector machines (SVMs). 
SVMs are derived based on the statistical learning theory, which does not assume any 
statistical model beforehand and leads to margin maximization for higher generalization 
ability. Although an SVM is constructed so that only the upper bound of the 
generalization error in a worst case is minimized, it performs better than conventional 
methods on average. Another advantage of SVMs is its convexity, that is, it has a unique 
solution differently from other hierarchical learning models. The idea of margin 
maximization has been applied to regression, density estimation and other areas. The 
second half of this chapter introduces the readers to the derivation of SVMs and their 
properties as well as several variations. 
 
1. Introduction  
 
The simplest model of a neuron is Perceptron that calculates the weighted sum of input 
signals and outputs +1 when the sum exceeds a threshold and −1 otherwise (Minsky and 
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Papert, 1969). The model attracted much attention as a binary classifier or dichotomy 
with an adaptive algorithm for a given dataset called the Perceptron learning rule because 
it has good properties such as the convergence theorem that assures finite times of 
iterations for a linearly separable dataset and the cycling theorem that proves periodical 
solutions otherwise. 
 
One way to introduce a nonlinear preprocessing to Perceptron is the multi-layer 
Perceptron model (MLP), where the threshold function is replaced with a sigmoid 
function such as the hyperbolic tangent and the preprocessor is autonomously acquired 
through learning. This model is simple and works very well but it suffers a lot of local 
optimal solutions and plateaus in a gradient learning method when the cost function is 
given as the sum of squared errors. 
 
An alternative to the MLP is a kernel model. The preprocessor of a kernel model must be 
fixed a priori but it has a large variety of choices. In fact, we need only the inner product 
of preprocessed data, without describing them in an explicit form. This enables the 
feature space to have even infinite dimensions, or treat graphs directly, which leads to a 
wide range of applications. Nowadays, kernel models are applied to not only classifiers 
but also regression problems and other linear signal processing fields. 
 
From the mathematical viewpoint, a kernel model is based on its positive (or 
nonnegative) definiteness. Positive definite kernels appeared in the literature early in the 
twentieth century and their general theory was established as the reproducing kernel 
Hilbert space in 1950’s. However, the idea of kernel models has become popular after it 
was introduced as a nonlinearity for support vector machines or SVMs in 1990’s. An 
SVM is a linear dichotomy like Perceptron but it maximizes the margin, that is, the 
minimum distance of examples from the discriminative boundary. The idea of margin 
maximization is based on Vapnik’s statistical learning theory that minimizes the 
structural risk in the framework of the probably approximately correct (PAC) learning 
introduced by Valiant in 1984. 
 
One of the good properties of SVMs is the structural risk minimization or SRM. The 
prediction error by SVMs is theoretically bounded even in the worst case and is often 
much lower than the bound or that of MLPs. Another pro is the uniqueness of the solution. 
An SVM results in a convex quadratic programming problem that has a unique solution. 
Moreover, recent development of computer science and engineering such as inner point 
methods makes the solvable size larger and larger. Thanks to such superiority, SVMs 
have attracted much attention and their theoretical properties as well as their variants have 
been well studied. 
 
2. Kernel Function and Feature Space 
 
A kernel method maps an input vector X∈x  to the corresponding feature vector ( )f x  in 
a high-dimensional feature space F  and processes it linearly, such as Perceptron, the 
linear regression or the principal component analysis (PCA). Let us consider the 
Perceptron learning here as a simple example. 
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Given the t -th example ( ) ( )( ),t y tx  where ( ) { } 1
n

k kt
=

∈x x  is the t -th input vector and 

( )y t  is the true label for the input vector, the Perceptron learning rule in the feature space 
F  is formulated as 
 
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )

T1 if sgn ,

1 otherwise,

t t y t t y t t t

t t

⎡ ⎤= − + ≠ ⎣ ⎦
= −

w w f x w f x

w w
  (1) 

 
where ( )tw  is the weight vector of Perceptron at iteration t  and T  denotes the 
transpose. Here, we assume that the weight vector can be expressed as a weighted sum of 
inputs, that is, 
 

( ) ( ) ( )
1

n

k k
k

t tα
=

=∑w f x        (2) 

 
Then, the algorithm (1) is simply rewritten as 
 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( )

T1 if sgn ,

1 otherwise,
k k k

k k

t t y t y t t t t

t t

α α

α α

⎡ ⎤= − + ≠ =⎣ ⎦
= −

w f x x x
             (3) 

 
for all 1, ,k n= . This is called the kernel Perceptron. Here, the inner product of ( )tw  

and ( )f x  for an arbitrary X∈x  is calculated as 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )T T

1 1
, .

n n

k k k k
k k

t t t Kα α
= =

= =∑ ∑w f x f x f x x x    (4) 

 
where ( ) ( ) ( )T,k kK =x x f x f x  is called a kernel function. Hence, although we do not 

know the feature vector ( )f x  itself, we can calculate the inner product. This makes the 
feature vector very high-dimensional or even infinite without increase of computational 
complexity, which is called the kernel trick. 
 
One example of kernel functions is the p -th order polynomial kernel 

( ) ( )T, 1
p

K ′ ′= +x x x x . When 2R∈x  and 2n = , a possible feature vector is 

 

( ) ( )T2 2
1 1 2 2 1 2, 2 , , 2 , 2 ,1 ,x x x x x x=f x      (5) 
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and hence ( ) ( )T tw f x  can express any polynomial function with order two or less. 

Another popular kernel function is Gaussian kernel ( )
2

2, exp
2

K
σ

⎛ ⎞′−
′ ⎜ ⎟= −

⎜ ⎟
⎝ ⎠

x x
x x , whose 

feature vector is essentially the Fourier transform as shown below: 
 
Suppose that the feature of x  indexed by Rω∈  is ( )exp i xω−  where ω  and x  are 

one-dimensional for simplicity. Then, the inner product of ( )exp i xω−  and ( )exp i xω ′−  
is calculated as 
 

( ) ( ) ( )

( )( ) ( )

( )

2

2 2

2

1, exp exp exp
22

1 exp exp
2 22

exp
2

K x x i x i x d

i x x x x
d

x x

ωω ω ω
π

ω
ω

π

⎛ ⎞
′ ′= − − −⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞′− − ′−⎜ ⎟ ⎜ ⎟= − −

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
⎛ ⎞′−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

∫

∫   (6) 

 
where ( )2exp 2 2ω π−  is a measure of the space of ω . 

 
An advantage of kernel models is that we need not consider the feature space for a kernel 
function explicitly. This property makes kernel models possible to apply to the spaces of 
statistical models, sequences, and even graphs. In fact, Mercer’s theorem assures the 
existence of an inner product space F  for any positive semi definite (or non-negative 
definite) kernel function ( ),K ⋅ ⋅ , where a symmetric continuous function ( ),K ⋅ ⋅  is said to 
be positive semi definite if and only if it satisfies  
 

( )
1 1

, 0
n n

k m k m
k m

c c K
= =

≥∑∑ x x        (7) 

 
for any vector { } 1

n
k k=x , any real number { } 1

n
k kc

=
 and any positive integer n . The 

Gaussian kernel, for example, has a feature space thanks to this property although it is 
difficult to describe explicitly. 
 
From the practical viewpoint, however, proving a kernel function being positive semi 
definite is more difficult than constructing a feature space explicitly. Hence, popular 
kernel functions are simple ones such as the polynomial kernel or Gaussian kernel, or 
their combinations. In fact, when two functions 1K  and 2K  are positive semi definite, so 
are the following functions: 
 

( ) ( ) ( ) ( )1 1 2 2 1 2 1 2 1 1 for , 0, , exp , , .c K c K c c K K K g K g′ ′+ ≥ x x x x  (8) 
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The polynomial kernel as well as Gaussian kernel are proven to be positive semi definite 
using (8). 
 
What kernel should we use? The answer strongly depends on the application we consider 
but an alternative approach is “kernel learning”, that is, automatic selection of optimal 
kernel from data. One typical example is to optimize the coefficients { } 1

j
i ic

=
 of a 

weighted sum of kernels, 
1

j

i i
i

c K
=
∑ , so that the performance of the learning machine 

becomes best. 
 
3. Representer Theorem 
 
In the previous section, we assumed that the weight vector could be expressed as a 
weighted sum of inputs, that is, 
 

( ) ( )
1

, .
n

k k
k

Kα
=

=∑w x x x        (9) 

 
A general theory to justify the above assumption is the Representer Theorem, which says 
the solution of the optimization problem below has a solution w  of the form in (9): 
 

{ } { } ( ) ( ) ( )1 1
, 1 1

min , , ,
nj

n n
k k k i i kk kjH c R i k

L y c h
= =

∈ ∈ = =

⎛ ⎞⎧ ⎫⎪ ⎪⎜ ⎟+ +Ψ⎨ ⎬
⎜ ⎟⎪ ⎪⎩ ⎭⎝ ⎠

∑
w

x w x x w   (10) 

 

where ( ){ } 1
,

n
k k k

y
=

x  is a dataset, K  is a kernel function of x , H is the reproducing 

kernel Hilbert space of K , { } 1
j

i ih
=

 is a set of basis functions of x , and ( )Ψ ⋅  is a 
monotonically increasing function (regularization term). Intuitively speaking, any 

component in the complement space 0H ⊥  of ( ){ }( )0 1
span ,

n
k k

H K
=

= ⋅ x  in w  does not 

change the cost L  but only increases the normalization term Ψ . 
 
One simple example of L  is 
 

min
w∈H

1
n

yk −w xk( )( )2

k=1

n

∑ +λ w
H

2
      (11) 

 
and another example is the support vector machine as shown later. Thanks to the kernel 
trick, the computational complexity of kernel methods does not depend on the dimensions 
of the feature space but only on the number of examples n . 
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Perceptron 
(MLP) 

sigmoid function. It can approximate any continuous function with 
an arbitrary precision if it has enough hidden units. 

PAC learning  : Probably Approximately correct learning. It considers the 
condition under which the probability that the error of a learning 
algorithm exceeds a specific value is bounded by a specific value. 

Perceptron : A linear dichotomy. It outputs the sign of the inner product 
between a weight vector and an input vector.  

Principal 
Component 
Analysis (PCA) 

: A dimensionality reduction method. It leaves the space spanned by 
eigenvectors with large eigenvalues (principal components) and 
removes the components induced by noise. 

Representer 
Theorem 

: A theorem that assures the solution of an optimization problem is 
described as a weighted sum of data. This is the theoretical base of 
kernel models.  

Support Vector 
Machine (SVM) 

 : The linear dichotomy that maximizes the margin to given 
examples. Since such one does not exist for a linearly inseparable 
dataset, there are variations to cope with this difficulty.  

Support Vector 
Regression 
(SVR) 

: The linear regression that employs the ε -insensitive error 
function. This is robust against outliers due to the L1-norm 
regularizer as well as a small number of support vectors due to the 
insensitivity. 
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