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Summary 
 
Type-1 Fuzzy Logic Systems (FLSs) have been applied to date with great success to 
different applications. However, for many real-world applications, there is a need to 
cope with large amounts of uncertainties. The traditional Type-1 FLSs that use crisp 
Type-1 fuzzy sets cannot directly handle such uncertainties. Type-2 FLSs that use Type-
2 fuzzy sets can handle such uncertainties to produce a better performance. Hence, 
Type-2 FLSs will have the potential to overcome the limitations of Type-1 FLSs and 
produce a new generation of fuzzy systems with improved performance for many 
applications which require handling high levels of uncertainty. This chapter will provide 
an overview of interval Type-2 fuzzy sets and interval Type-2 FLSs and their 
advantages. We will also present different techniques to avoid the computational 
overheads and thus enabling the interval Type-2 FLSs to produce a good real time 
response. Furthermore, we will present a brief overview of interval Type-2 FLSs 
applications.  
 
1. Introduction  
 
A Fuzzy Logic System (FLS) is credited with being an adequate methodology for 
designing robust systems that are able to deliver a satisfactory performance in the face 
of uncertainty and imprecision. In addition, FLSs provide a way of constructing systems 
by means of linguistic labels and linguistically interpretable rules in a user-friendly way 
closer to human thinking and perception. 
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However, there are many sources of uncertainty facing the FLS in dynamic real-world 
unstructured environments and many real-world applications; some of the uncertainty 
sources are as follows: 
• Uncertainties in inputs to the FLS, which translate into uncertainties in the 

antecedents’ membership functions as the sensors measurements are affected by high 
noise levels from various sources. In addition, the input sensors can be affected by 
the conditions of observation (i.e. their characteristics can be changed by the 
environmental conditions such as wind, sunshine, humidity, rain, etc.).  

• Uncertainties in outputs, which translate into uncertainties in the consequents’ 
membership functions of the FLS. Such uncertainties can result from the change of 
the actuators’ characteristics, which can be due to wear, tear, environmental changes, 
etc.  

• Linguistic uncertainties as the meaning of words that are used in the antecedents’ and 
consequents’ linguistic labels can be uncertain, as words mean different things to 
different people (Mendel 2001). In addition, experts do not always agree and they 
often provide different consequents for the same antecedents. A survey of experts 
will usually lead to a histogram of possibilities for the consequent of a rule; this 
histogram represents the uncertainty about the consequent of a rule (Mendel 2001).  

• Uncertainties associated with the change in the operation conditions. Such 
uncertainties can translate into uncertainties in the antecedents’ and/or consequents’ 
membership functions.  

• Uncertainties associated with the use of noisy training data that could be used to 
learn, tune or optimize the FLS.  

 
All of these uncertainties translate into uncertainties about fuzzy set membership 
functions (Mendel 2001). The vast majority of the FLSs that have been used to date 
were based on the traditional Type-1 FLSs. However, Type-1 FLSs cannot fully handle 
or accommodate the linguistic and numerical uncertainties associated with dynamic 
unstructured environments as they use Type-1 fuzzy sets. Type-1 fuzzy sets handle the 
uncertainties associated with the FLS inputs and outputs by using precise and crisp 
membership functions that the user believes capture the uncertainties. Once the Type-1 
membership functions have been chosen, all the uncertainty disappears because Type-1 
membership functions are precise (Mendel 2001). The linguistic and numerical 
uncertainties associated with dynamic unstructured environments cause problems in 
determining the exact and precise antecedents’ and consequents’ membership functions 
during the FLS design. Moreover, the designed Type-1 fuzzy sets can be sub-optimal 
under specific environment and operation conditions; however, because of the 
environment changes and the associated uncertainties, the chosen Type-1 fuzzy sets 
might not be appropriate anymore. This can cause degradation in the FLS performance, 
which can result in poor efficiency and we might end up wasting time in frequently 
redesigning or tuning the Type-1 FLS so that it can deal with the various uncertainties 
(Hagras 2004).  
 
A Type-2 fuzzy set is characterized by a fuzzy Membership Function (MF), i.e. the 
membership value (or membership grade) for each element of this set is a fuzzy set in 
[0,1], unlike a Type-1 fuzzy set where the membership grade is a crisp number in [0,1] 
(Mendel 2001). The MFs of Type-2 fuzzy sets are three dimensional and include a 
footprint of uncertainty. It is the new third dimension of Type-2 fuzzy sets and the 
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footprint of uncertainty that provide additional degrees of freedom that make it possible 
to directly model and handle uncertainties (Mendel 2001). The Type-2 fuzzy sets are 
useful where it is difficult to determine the exact and precise membership functions. 
Type-2 FLSs that use Type-2 fuzzy sets have been used to date with great success 
where the Type-2 FLSs have outperformed their Type-1 counterparts in several 
applications where there is high level of uncertainty (Hagras 2007a).  
 
In the next section, we will introduce the Type-2 fuzzy sets and their associated 
terminologies. Section 3, will introduce briefly the interval Type-2 FLS and its various 
components. Section 4, will provide a practical example to clarify the various operations 
of the Type-2 FLS. Section 5 will present different techniques to avoid the 
computational overheads and thus enabling the interval Type-2 FLSs to produce a good 
real time response. Section 6 will provide a brief overview of applications of interval 
Type-2 FLSs. Finally conclusions and future directions are presented in Section 7.  
 
2. Type-2 Fuzzy Sets 
 
Type-1 FLSs employ crisp and precise Type-1 fuzzy sets. For example, consider a 
Type-1 fuzzy set representing the linguistic label of “Low” temperature in Figure 1a: if 
the input temperature x is 15o C, then the membership of this input to the “Low” set will 
be the certain and crisp membership value of 0.4. However, the center and endpoints of 
this Type-1 fuzzy set can vary due to uncertainties (which could arise for example from 
noise) in the measurement of temperature (numerical uncertainty) and in the situations 
in which 15o C could be called “Low” (linguistic uncertainty) (in the Arctic 15o C might 
be considered “High”, while in the Caribbean it would be considered “low”). If this 
linguistic label was employed with a fuzzy logic system, then the Type-1 FLS would 
need to be frequently tuned to handle such uncertainties. Alternatively, one would need 
to have a group of separate Type-1 sets and Type-1 FLSs where each FLS will handle a 
certain situation.  
 
On the other hand, a Type-2 fuzzy set is characterized by a fuzzy Membership Function 
(MF), i.e. the membership value (or membership grade) for each element of this set is 
itself a fuzzy set in [0,1]. For example if the linguistic label of “Low” temperature is 
represented by a Type-2 fuzzy set as shown in Figure 1b, then the input x  of 15o C will 
no longer have a single value for the MF. Instead, the MF takes on values wherever the 
vertical line intersects the area shaded in gray. Hence, 15o C will have primary 
membership values that lie in the interval [0.2, 0.6]. Each point of this interval will have 
also a weight associated with it. Consequently, this will create an amplitude distribution 
in the third dimension to form what is called a secondary membership function, which 
can be a triangle as shown in Figure 1c. In case the secondary membership function is 
equal to 1 for all the points in the primary membership and if this is true for x X∀ ∈ , we 
have the case of an interval Type-2 fuzzy set. The input x  of 15o C will now have a 
primary membership and an associated secondary MF. Repeating this for all 
x X∈ creates a three-dimensional MF (as shown in Figure 1d) —a Type-2 MF—that 
characterizes a Type-2 fuzzy set. The MFs of Type-2 fuzzy sets are three dimensional 
and include a Footprint of Uncertainty (FOU) (shaded in gray in Figure1b). It is the new 
third-dimension of Type-2 fuzzy sets and the FOU that provide additional degrees of 
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freedom and that make it possible to directly model and handle the numerical 
uncertainties and linguistic uncertainties. 
 

 
 

Figure 1. a) A Type-1 fuzzy set. b) A Type-2 fuzzy set- primary membership function. 
c) An interval Type-2 fuzzy set secondary MF (drawn with dotted lines) and a general 
Type-2 MF (solid line) at a specific point x′ . d) 3-d view of a general Type-2 fuzzy set 

 
2.1. Type-2 Fuzzy Sets Terminologies and Operations 
 
A Type-2 fuzzy set A�  is characterized by a Type-2 MF ( , )A x uμ �  (Mendel 2001) where 
x X∈ and [0,1]xu J∈ ⊆ , i.e., 
  

{ }(( , ), ( , )) | , [0,1]xAA x u x u x X u Jμ= ∀ ∈ ∀ ∈ ⊆�
�                 (1) 

 
in which 0 ( , ) 1A x uμ≤ ≤� . A�  can also be expressed as follows (Mendel 2001): 
 
A� =  A ( , ) / ( , )

xx X u J

x u x uμ
∈ ∈
∫ ∫ �         [0,1]xJ ⊆ ,                      (2) 

 
where ∫∫ denotes union over all admissible x  andu . For discrete universes of discourse ∫ 
is replaced by ∑ (Mendel 2001).  
 
At each value of x  say x x′= , the 2-D plane whose axes are u  and ( ),A x uμ ′�  is called 

a vertical slice of ( ),A x uμ � . A secondary membership function is a vertical slice of 

( ),A x uμ � . It is ( ),A x x uμ ′=�  for x X∈ and [ ] 0,1xu J ′∀ ∈ ⊆  (Mendel 2001), i.e.  
 
 

( ) ( ) [ ]'  
'

,  ( ) / ( )      0,1
x

x xA A
u J

x x u x f u u Jμ μ ′
∈

′ ′= ≡ = ⊆∫� �           (3) 
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in which ( )'0 1xf u≤ ≤ . Because x X∀ ∈  x X∈ , the prime notation on ( )A xμ ′�  is 
dropped and we refer to Aμ � (x) as a secondary membership function (Mendel 2002a); it 
is a Type-1 fuzzy set which is also referred to as a secondary set. Many choices are 
possible for the secondary membership functions. According to Mendel (2001) the 
name that we use to describe the entire Type-2 membership function is associated with 
the name of the secondary membership functions; so, for example if the secondary 
membership function is triangular then we refer to ( ),A x uμ �  as a triangular Type-2 
membership function. Figure 1c shows a triangular secondary membership function at 
x′  which is drawn using the thick line. Based on the concept of secondary sets, Type-2 
fuzzy sets can be written as the union of all secondary sets (Mendel 2001).  
 
The domain of a secondary membership function is called primary membership of x  
(Mendel 2001). In Eq. (1), xJ  is the primary membership of x , where [ ]0,1xJ ⊆  for 

x X∀ ∈  (Mendel 2001). When ( ) 1xf u = , [ ] 0,1xu J∀ ∈ ⊆ , then the secondary 
membership functions are interval sets, and, if this is true for x X∀ ∈ , we have the case 
of an interval Type-2 membership function (Mendel 2001). Interval secondary 
membership functions reflect a uniform uncertainty at the primary memberships of x. 
Figure 1c shows the secondary membership at x′  (drawn in dotted lines in Figure 1c) in 
case of interval Type-2 fuzzy sets. 
 
2.1.1. Footprint of Uncertainty  
 
The uncertainty in the primary memberships of a Type-2 fuzzy set A� , consists of a 
bounded region that is called the footprint of uncertainty (FOU) (Mendel 2002a). It is 
the union of all primary memberships (Mendel 2002a), i.e., 
 
FOU( ) x

x X

A J
∈

=� ∪                                                                  (4) 

 
The shaded region in Figure 1b is the FOU. It is very useful, because according to  
Mendel and John  (2002a) it not only focuses our attention on the uncertainties inherent 
in a specific Type-2 membership function, whose shape is a direct consequence of the 
nature of these uncertainties, but it also provides a very convenient verbal description of 
the entire domain of support for all the secondary grades of a Type-2 membership 
function. The shaded FOU implies that there is a distribution that sits on top of it—the 
new third dimension of Type-2 fuzzy sets. What that distribution looks like depends on 
the specific choice made for the secondary grades. When they all equal one, the 
resulting Type-2 fuzzy sets are called interval Type-2 fuzzy sets. Establishing an 
appropriate FOU is analogous to establishing a probability density function (pdf) in a 
probabilistic uncertainty situation (Mendel 2001). The larger the FOU the more 
uncertainty there is. When the FOU collapses to a curve, then its associated Type-2 
fuzzy set collapses to a Type-1 fuzzy set, in much the same way that a pdf collapses to a 
point when randomness disappears.  
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2.1.2. Embedded Fuzzy Sets  
 
For continuous universes of discourse X  and U , an embedded Type-2 set eA� is defined 
as follows (Mendel 2001): 
  

e [ ( ) / ] /x
x X

A f u u x
∈

= ∫�   [ ] 0,1xu J U∈ ⊆ =                                 (5) 

 
Set eA� is embedded in A� and there is an uncountable number of embedded Type-2 sets 

is A� (Mendel 2002b). For discrete universes of discourse X  and U , an embedded 

Type-2 set eA�  has N elements, where eA�  contains exactly one element from 

1 2
, ,.....

Nx x xJ J J , namely 1, 2 , , Nu u u… , each with its associated secondary grade 

1 21 2( ), ( ),..... ( )
Nx x x Nf u f u f u  [Mendel 2001], i.e., 

  

e
1
[ ( ) / ] /

d

N

x d d d
d

A f u u x
=

=∑�  [ ]0,1
dd xu J U∈ ⊆ =                         (6) 

 

Set eA� is embedded in A� and there is a total of 
1

N

d
d

M
=
∏ eA�  [23]. Where dM  is the 

discretization levels of j
du  at each dx . 

 
For continuous universes of discourse X  and U , an embedded Type-1 set eA� is defined 
as follows (Mendel 2002a)  
                             

e /
x X

A u x
∈

= ∫�               [ ] 0,1xu J U∈ ⊆ =                                   (7) 

 
Set eA  is the union of all the primary memberships of set eA� in Eq. (5) and there is an 
uncountable number of eA . 
 
For discrete universes of discourse X  and U  an embedded Type-1 set eA  has N  
elements, one each from 

1 2
, ,.....

Nx x xJ J J , namely 1, 2 ,  Nu u u…… , (Mendel 2002b), i.e.,  
 

e
1

/
N

d d
d

A u x
=

= ∑  [ ] U  0,1
dd xu J∈ ⊆ =                                  (8) 

 

There is a total of e
1

N

d
d

M A
=
∏  (Mendel 2002a). 

 
It has proven by Mendel and John (2002a) that a Type-2 fuzzy set A� can be represented 
as the union of its Type-2 embedded sets, i.e., 
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e
1

n
l

l
A A

=

=∑� �     where 
1

N

d
d

n M
=

′′ ≡∏                                         (9) 

 
Figure 2a shows three Type-1 fuzzy sets (Very Very Low, Very Low and Low) used to 
express in detail the different fuzzy levels of Low for an input to the FLS. In Figure 2b 
notice that the Type-1 fuzzy sets for Very Very Low, Very Low and Low are embedded 
in the interval Type-2 fuzzy set Low, not only this but there is a large number of other 
embedded Type-1 fuzzy sets (uncountable for continuous universes of discourse). 
 

 
 

Figure 2. a) Three Type-1 fuzzy sets representing an input to the FLS. b) The three 
Type-1 fuzzy sets in Figure 2a are embedded in the LOW Type-2 fuzzy set 

 
2.1.3. Interval Type-2 Fuzzy Sets 
 
In Eq. (3) when ( ) 1xf u = , [ ] 0,1xu J∀ ∈ ⊆ , then the secondary membership functions 
are interval sets, and, if this is true for x X∀ ∈ , we have the case of an interval Type-2 
membership function which characterizes the interval Type-2 fuzzy sets. Interval 
secondary membership functions reflect a uniform uncertainty at the primary 
memberships of x . Interval Type-2 sets are very useful when we have no other 
knowledge about secondary memberships (Liang 2000). The membership grades of the 
interval Type-2 fuzzy sets are called “interval Type-1 fuzzy sets”. Since all the 
memberships in an interval Type-1 set are unity, in the sequel, an interval Type-1 set is 
represented just by its domain interval, which can be represented by its left and right 
end-points as [ ],l r  (Liang 2000). The two end-points are associated with two Type-1 
membership functions that are referred to as Lower MF (LMF) and Upper MF (UMF) 
( ( ), ( )AA

x xμ μ �� ) (Liang 2000).  
 
The upper and lower membership functions are two Type-1 membership functions 
which are bounds for the footprint of uncertainty ( )FOU A�  of a Type-2 fuzzy set A� .  
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