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Summary 
 
In the past three decades, evolutionary algorithms (EAs) have been found to be 
extremely useful in solving various search and optimization problems. Although much 
of the early advancements and applications concentrated in solving single-objective 
optimization problems, researchers realized the potential and niche of EAs is handling 
multi-objective optimization problems vis-a-vis their classical counterparts. Suggested 
in the beginning of nineties, evolutionary multi-objective optimization (EMO) 
algorithms are now routinely used in solving problems with multiple conflicting 
objectives in various branches of engineering, science and commerce. In this chapter, 
we provide an overview of EMO methodologies by first presenting principles of EMO 
through an illustration of one specific algorithm and its application to an interesting 
real-world bi-objective optimization problem. Thereafter, we provide a list of recent 
research and application developments of EMO to provide a picture of some salient 
advancements in EMO research. The development and application of EMO to multi-
objective optimization problems and their continued extensions to solve other related 
problems has elevated the EMO research to a level which may now undoubtedly be 
termed as an active field of research with a wide range of theoretical and practical 
research and application opportunities. Hopefully, this chapter should motivate readers 
to pay more attention to their growing field of evolutionary multi-objective optimization 
methods and their scopes in practice.  
 
1. Introduction 
 
An optimization task is a computing process in which an intelligent search is performed 
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in an usually large-dimensional space involving a number of decision variables 
(Boolean, discrete, real, permutations etc.) for locating a special point that would 
minimize or maximize a pre-specified objective which is a function of decision 
variables. The search space in most real-world problems is restricted by a number of 
constraints that are also functions of decision variables. The optimal point lies in the 
restricted search space, commonly known as the feasible search space. When objective 
and constraint functions are linear or convex functions of decision variables, provably 
fast optimization algorithms are available for locating the optimum point even for a 
large dimensional space. However, for arbitrary structures of objective and constraint 
functions, no single optimization algorithm can be equally efficient for all problems 
(Wolpert and Macready, 1997) , hence practitioners are better off in looking for an 
efficient algorithm for the problem at hand. 
 
Optimization methodologies are useful in solving various types of practical problems. 
Some of them are presented below:  
1. Optimal design problems in which the shape, connectivity, dimensions, materials 

etc. of the component or the system at hand are decision variables. The objective 
can be any design criterion, most common being the minimization of weight of the 
product or maximizing the life of the product or achieving some other functional 
goals. Constraints are usually involved with feasibility and safety of the product in 
terms of stress being less than or equal to strength, natural frequency being higher 
than forcing frequency. A lion’s share of optimization efforts is spent in solving 
optimal design problems.  

2. Optimal manufacturing process design problems in which process parameters are 
decision variables and the objective is often to minimize the overall processing time 
or maximize the surface finish or quality of the fabricated product. Constraints are 
often related to meeting available resources, due date of delivery, etc.  

3. Optimal control problems for which variations of a few control parameters over 
time are decision variables and objective is often to minimize overall energy 
requirement, maximize the quality of output product, or minimize overall control 
time. Constraints involve in meeting specified by-products or meeting a specified 
value of one or more objectives mentioned above.  

4. Inverse problems such as reconstruction or tomography problems for which a 
construction plan of available information (images or other data) becomes decision 
variable and the error between reconstructed structure and actual structure becomes 
an objective that is usually minimized. A physically viable and most simplistic 
reconstruction structure (known as Occam’s razor (Soklakov, 2002) becomes 
constraints.  

5. Data-driven modeling problems in which modeling structure and associated 
parameters become decision variables. The error in performances between model 
and the real object (or desired object) becomes an objective that needs to be 
minimized. Instead of allowing any arbitrary model to appear during the 
optimization process, some constraints relating the feasibility of components of the 
structure can be kept as constraints.  

6. Data-mining problems in which classification, clustering, prediction, and 
forecasting related activities can also be solved using by posing them as a suitable 
optimization problems.  

7. Machine learning tasks, in which one of the main activities is to develop intelligent 
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and self-adaptive systems, are often solved by posing the problems as optimization 
problems. Since optimal solutions are special points in the entire search space of 
possible solutions, optimization algorithms are intelligent procedures for arriving at 
these special solutions. Thus, it is not surprising that optimization algorithms can 
assist in finding an optimal configuration or a system that is self-adaptive and 
intelligent enough to arrive at human-competitive solutions.  

 
Most such practical search and optimization problems usually involve nonlinear, non-
convex and non-differentiable objective and constraint functions. They provide a stiff 
challenge to mathematically-motivated optimization algorithms even today. In such 
cases, the use of meta-heuristic optimization methods such as evolutionary algorithms 
(Goldberg, 2989; Holland, 1975; De Jong 2006), simulated annealing (Laarhoven amd 
Aarts, 1987), tabu search (Glover, 1989; 1990), and other methods motivated by another 
natural or physical phenomenon have been found to be useful. In this chapter, we 
describe multi-objective optimization algorithms based on the EA methodology. 
 
EAs were traditionally used for solving problems having a single goal or objective. 
However, as evident from the above list of optimization problems, most real-world 
problems ideally involve multiple conflicting objectives, such as simultaneously 
minimizing cost of fabricating the product and maximizing its quality. Theoretically 
such multi-objective optimization problems give rise to a set of trade-off optimal 
solutions, known as Pareto-optimal solutions. Since classical optimization algorithms 
work with a single point in each iteration and deliver a single solution at the end of the 
optimization task, they need to be applied multiple times in order to find multiple 
Pareto-optimal solutions. This makes the application of classical optimization 
algorithms inconvenient for solving multi-objective optimization problems. On the 
other hand, EA’s population approach makes them ideal candidates for solving multi-
objective optimization problems.  
 
The exploitation of EA’s population approach in finding and maintaining multiple 
Pareto-optimal solutions was demonstrated during 1993-95 by three independent groups 
of researchers from Europe (Fonseca and Fleming, 1993), India (Srinivas and Deb, 
1995), and USA (Horn et al., 1994). All three algorithms originated from David E. 
Goldberg’s description of a 10-like sketch of a probable EA for multi-objective 
optimization (Goldberg, 1989). These studies were so exemplary and convincing that 
they in some sense gave birth to a new and promising field of computation: 
Evolutionary Multi-Objective Optimization (EMO). Subsequent to the three studies, 
EMO methodologies were made better, faster and more accessible. The algorithms were 
commercialized by various software companies and have made the field of EMO more 
popular and applicable to many different problems that academic researchers probably 
would not have achieved alone.  
 
In this chapter, we provide a brief overview of the EMO principle, present one EMO 
algorithm in detail, and emphasize the importance of using EMO in practice. Besides 
this specific algorithm, there exist a number of other equally efficient EMO algorithms 
which we do not describe here for brevity. Instead, in this chapter, we discuss a number 
of recent advancements of EMO research and application which are driving the 
researchers and practitioners ahead. Fortunately, researchers have utilized the EMO’s 
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principle of solving multi-objective optimization problems in handling various other 
problem-solving tasks. The diversity of EMO’s research is bringing researchers and 
practitioners together with different backgrounds including computer scientists, 
mathematicians, economists, engineers. The topics we discuss here amply demonstrate 
why and how EMO researchers from different backgrounds must and should collaborate 
in solving complex problem-solving tasks which have become the need of the hour in 
most branches of science, engineering, and commerce today.  
 
2. Evolutionary Multi-objective Optimization (EMO) 
 
A multi-objective optimization problem involves a number of objective functions which 
are to be either minimized or maximized subject to a number of constraints and variable 
bounds: 
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A solution n∈x R  is a vector of n  decision variables: ( )T

1 2, , , nx x x=x … . The solutions 
satisfying the constraints and variable bounds constitute a feasible set S  in the decision 
variable space nR . One of the striking differences between single-objective and multi-
objective optimization is that in multi-objective optimization the objective function 
vectors belong to a multi-dimensional objective space MR . The objective function 
vectors constitute a feasible set Z  in the objective space. For each solution S∈x , there 
exists a point Z∈z , denoted by ( ) ( )T

1 2, , , Mf z z z= =x z … . To make the descriptions 
clear, we refer a decision variable vector as a solution and the corresponding objective 
vector as a point. 
 
The optimal solutions in multi-objective optimization can be defined from a 
mathematical concept of partial ordering (Schroder, 2003). In the parlance of multi-
objective optimization, the term domination is used for this purpose. In this section, we 
restrict ourselves to discuss unconstrained (without any equality, inequality or bound 
constraints) optimization problems. The domination between two solutions is defined as 
follows (Deb, 2001; Miettinen, 1999):  
 
Definition 1. A solution ( )1x  is said to dominate the another solution ( )2x , if both the 
following conditions are true:  
8. The solution ( )1x  is no worse than ( )2x  in all objectives. Thus, the solutions are 

compared based on their objective function values (or location of the corresponding 
points ( ( )1z  and ( )2z ) in the objective function set Z ).  

9. The solution ( )1x  is strictly better than ( )2x  in at least one objective.  
 
For a given set of solutions (or corresponding points in the objective function set Z , for 
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example, those shown in Figure 1(a)), a pair-wise comparison can be made using the 
above definition and whether one point dominates another point can be established. 
  

 
 

Figure 1. A set of points and the first non-dominated front are shown. 
 
All points which are not dominated by any other member of the set are called the non-
dominated points of class one, or simply the non-dominated points. For the set of six 
points shown in the figure, they are points 3, 5, and 6. One property of any two such 
points is that a gain in an objective from one point to the other happens only due to a 
sacrifice in at least one other objective. This trade-off property between the non-
dominated points makes the practitioners interested in finding a wide variety of them 
before making a final choice. These points make up a front when viewed together on the 
objective space; hence the non-dominated points are often visualized to represent a non-
dominated front. The theoretical computational effort needed to select the points of the 
non-dominated front from a set of N  points is ( )logO N N  for 2 and 3 objectives, and 

( )2logMO N N−  for 3M >  objectives (Kung et al., 1975), but for a moderate number of 
objectives, the procedure need not be particularly computationally effecient in practice. 
 
With the above concept, now it is easier to define the Pareto-optimal solutions in a 
multi-objective optimization problem. If the given set of points for the above task 
contain all feasible points in the objective space, the points lying on the first non-
domination front, by definition, do not get dominated by any other point in the objective 
space, hence are Pareto-optimal points (together they constitute the Pareto-optimal 
front) and the corresponding pre-images (decision variable vectors) are called Pareto-
optimal solutions. However, more mathematically elegant definitions of Pareto-
optimality (including the ones for continuous search space problems) exist in the multi-
objective optimization literature (Jahn, 2004; Miettinen, 1999). Interested readers are 
encouraged to refer to these references. 
 
Obviously, the above definition and procedure of arriving at Pareto-optimal solutions is 
not a practical approach, as it involves finding all solutions in the search space. 
According to no-free-lunch theorem (Wolpert and Macready, 1997), since no single 
mathematical or classical optimization algorithm exists that would solve all single-
objective optimization problems efficiently, the no-free-lunch theorem can also be 
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extended for multi-objective optimization and a similar conclusion can be made (Corne 
and Knowles, 2000). Therefore, in solving arbitrary multi-objective optimization 
problems, our goal is use an efficient algorithm that would reach close to the true 
Pareto-optimal solutions. In Section 4 we present an optimization algorithm that in most 
problems consider only a tiny fraction search space and proceed near the Pareto-optimal 
solutions with iterations.  
 
2.1. EMO Principles 
 
In the context of multi-objective optimization, the extremist principle of finding the 
optimum solution cannot be applied to one objective alone, when the rest of the 
objectives are also important. This clearly suggests two ideal goals of multi-objective 
optimization:  
• Convergence: Find a (finite) set of solutions which lie on the Pareto-optimal front, 

and  
• Diversity: Find a set of solutions which are diverse enough to represent the entire 

range of the Pareto-optimal front.  
 
EMO algorithms attempt to follow both the above principles, similar to a posteriori 
MCDM method. Figure 2 shows schematically the principles followed in an EMO 
procedure. 
 
Since EMO procedures are heuristic based, they may not guarantee finding exact 
Pareto-optimal points, as a theoretically provable optimization method would do for 
tractable (for example, linear or convex) problems. But EMO procedures have essential 
operators to constantly improve the evolving non-dominated points (from the point of 
view of convergence and diversity mentioned above) similar to the way most natural 
and artificial evolving systems continuously improve their solutions. To this effect, a 
recent study (Deb et al., 2007) has demonstrated that a particular EMO procedure, 
starting from random non-optimal solutions, can progress towards theoretical Karush-
Kuhn-Tucker (KKT) points with iterations in real-valued multi-objective optimization 
problems. The main difference and advantage of using an EMO compared to a 
posteriori MCDM procedures is that multiple trade-off solutions can be found in a 
single run of an EMO algorithm, whereas most a posteriori MCDM methodologies 
would require multiple independent runs. 
 
In Step 1 of the EMO-based multi-objective optimization and decision-making 
procedure (the task shown vertically downwards in Figure 2), multiple trade-off, non-
dominated points are found. Thereafter, in Step 2 (the task shown horizontally, towards 
the right), higher-level information is used to choose one of the obtained trade-off 
points.  
 
All points which are not dominated by any other member of the set are called the non-
dominated points of class one, or simply the non-dominated points. For the set of six 
points shown in the figure, they are points 3, 5, and 6. One property of any two such 
points is that a gain in an objective from one point to the other happens only due to a 
sacrifice in at least one other objective. This trade-off property between the non-
dominated points makes the practitioners interested in finding a wide variety of them 
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before making a final choice. These points make up a front when viewed together on the 
objective space; hence the non-dominated points are often visualized to represent a non-
dominated front. The theoretical computational effort needed to select the points of the 
non-dominated front from a set of N  points is ( )logO N N  for 2 and 3 objectives, and 

( )2logMO N N−  for 3M >  objectives [94], but for a moderate number of objectives, the 
procedure need not be particularly computationally effecient in practice. 
 

 
 

Figure 2. Schematic of a two-step multi-criteria optimization and decision-making 
procedure. 

 
With the above concept, now it is easier to define the Pareto-optimal solutions in a 
multi-objective optimization problem. If the given set of points for the above task 
contain all feasible points in the objective space, the points lying on the first non-
domination front, by definition, do not get dominated by any other point in the objective 
space, hence are Pareto-optimal points (together they constitute the Pareto-optimal 
front) and the corresponding pre-images (decision variable vectors) are called Pareto-
optimal solutions. However, more mathematically elegant definitions of Pareto-
optimality (including the ones for continuous search space problems) exist in the multi-
objective optimization literature [103, 82]. Interested readers are encouraged to refer to 
these references. 
 
Obviously, the above definition and procedure of arriving at Pareto-optimal solutions is 
not a practical approach, as it involves finding all solutions in the search space. 
According to no-free-lunch theorem [128], since no single mathematical or classical 
optimization algorithm exists that would solve all single-objective optimization 
problems efficiently, the no-free-lunch theorem can also be extended for multi-objective 
optimization and a similar conclusion can be made [27]. Therefore, in solving arbitrary 
multi-objective optimization problems, our goal is use an efficient algorithm that would 
reach close to the true Pareto-optimal solutions. In Section 4 we present an optimization 
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algorithm that in most problems consider only a tiny fraction search space and proceed 
near the Pareto-optimal solutions with iterations.  
 
2.2. A Posteriori MCDM Methods and EMO 
 
In the ‘a posteriori’ MCDM approaches (also known as ‘generating MCDM methods’), 
the task of finding multiple Pareto-optimal solutions is achieved by executing multiple 
independent single-objective optimizations, each time finding a single Pareto-optimal 
solution (Miettinen, 1999). A parametric scalarizing approach (such as the weighted-
sum approach, ε -constraint approach, and others) can be used to convert multiple 
objectives into a parametric single-objective objective function. By simply varying the 
parameters (weight vector or ε -vector) and optimizing the scalarized function, different 
Pareto-optimal solutions can be found. In contrast, in an EMO, multiple Pareto-optimal 
solutions are attempted to be found in a single run of the algorithm by emphasizing 
multiple non-dominated and isolated solutions in each iteration of the algorithm and 
without the use of any scalarization of objectives. However, several EMO efforts have 
been put in finding multiple Pareto-optimal solutions in a single run using one of the 
above scalarizing methods (Jin et al., 2001; Hajela and Lin, 1992). 
 

 
 

Figure 3: A posteriori MCDM methodology employing independent single-objective 
optimizations. 

 

 
 

Figure 4. Evolutionary multi-objective optimization algorithm constitutes a parallel 
search. 
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Consider Figure 3, in which we sketch how multiple independent parametric single-
objective optimizations (through a posteriori MCDM method) may find different 
Pareto-optimal solutions. 
 
It is worth highlighting here that the Pareto-optimal front corresponds to global optimal 
solutions of several problems each formed with a different scalarization of objectives. 
During the course of an optimization task, algorithms must overcome a number of 
difficulties, such as infeasible regions, local optimal solutions, flat or non-improving 
regions of objective landscapes, isolation of optimum, etc., to finally converge to the 
global optimal solution. Moreover, due to practical limitations, an optimization task 
must also be completed in a reasonable computational time. All these difficulties in a 
problem require that an optimization algorithm strikes a good balance between 
exploring new search directions and exploiting the extent of search in currently-best 
search direction. When multiple runs of an algorithm need to be performed 
independently to find a set of Pareto-optimal solutions, the above balancing act must 
have to be performed in every single run. Since runs are performed independently from 
one another, no information about the success or failure of previous runs is utilized to 
speed up the overall process. In difficult multi-objective optimization problems, such a 
memory-less, a posteriori method may demand a large overall computational overhead 
to find a set of Pareto-optimal solutions (Shukla and Deb, 2007). Moreover, despite the 
issue of global convergence, independent runs may not guarantee achieving a good 
distribution among obtained points by an easy variation of scalarization parameters. 
 
EMO, as mentioned earlier, constitutes an inherent parallel search. As explained in 
Figure 4, when a particular population member overcomes certain difficulties and 
makes a progress towards the Pareto-optimal front, its variable values and their 
combination must reflect this fact. When a recombination takes place between this 
solution and another population member, such valuable information of variable value 
combinations gets shared through variable exchanges and blending, thereby making the 
overall task of finding multiple trade-off solutions a parallelly processed task. We shall 
demonstrate this aspect of parallel processing of population members through a 
simulation study in Section 2.  
 
3. A Brief Time-line of the Development of EMO Methodologies 
 
During the early years, EA researchers have realized the need of solving multi-objective 
optimization problems in practice and mainly resorted to using weighted-sum 
approaches to convert multiple objectives into a single goal (Fogel et al., 1966; 
Rosenberg, 1967).  
 
However, the first implementation of a real multi-objective evolutionary algorithm 
(vector-evaluated GA or VEGA) was suggested by David Schaffer in the year 1984 
(Schaffer, 1984). Schaffer modified the simple three-operator genetic algorithm 
(Holland, 1975; De Jong 2006) (with selection, crossover, and mutation) by performing 
independent selection cycles according to each objective. The selection method is 
repeated for each individual objective to fill up a portion of the mating pool. Then the 
entire population is thoroughly shuffled to apply crossover and mutation operators. This 
is performed to achieve the mating of individuals of different subpopulation groups. The 
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GP : Genetic programming. 
IBEA : Indicator based EA. 
Ideal point : Best objective vector constructed from all solutions in the feasible 

search space. 
LOTZ : Leading ones and trailing zeros test problem. 
MCDA : Multi-criterion decision analysis. 
MCDM : Multiple criteria decision making. 
M-NGSA-II : Many-objective NSGA-II. 
MO : Multi-objective optimization. 
MOEA/D : Multi-objective EA based on decomposition. 
MOGA : Multi-objective GA. 
MOMGA : Multi-objective messy GA. 
MOOP : Multi-objective optimization problem. 
Nadir point : The worst objective vector constructed from all Pareto-optimal points. 
NFL : No free lunch theorem in the context of optimization algorithms. 
NPGA : Niched Pareto GA. 
NSGA : Non-dominated sorting GA for performing multi-objective 

optimization. It requires setting of a niching parameter. 
NSGA-II : An improved non-dominated sorting GA procedure which does not 

require any additional parameter. 
PAES : Pareto-archived ES. 
PESA : Pareto-envelope based simulated annealing. 
PPSN : Parallel problem solving from nature. 
SBX : Simulated binary crossover operator used as a recombination operator 

in real-coded GAs.  
SEMO : Simple EMO procedure. 
SPEA : Strength Pareto-EA which is an elitist EMO procedure. 
VEGA : Vector-evaluated GA. 
ZDT : Zitzler-Deb-Thiele test problems for multi-objective optimization. 
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