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Summary 
 
The field of computational intelligence (CI) has taken flight and for the last decades 
served in a large part of computer science and engineering literature as a field that 
devotes to the development and implementations of various new methodologies for 
solving complex problems successfully. Memetic Algorithm (MA), also commonly 
known as hybrid evolutionary algorithms (EAs), or genetic local search, represents a 
recent established field of CI that has attracted increasing research interest. In parallel to 
the MA definition and early diffusion, a strictly related concept, i.e. hyper-heuristic, was 
defined as an algorithm composed of multiple algorithmic components coordinated by a 
supervisor element. Recent developments of memetic computing can lead to the fusion 
of (canonical) memetic algorithms and meta-heuristics, especially of the adaptive rules 
in the coordination mechanisms. Since MAs were not proposed as specific optimization 
algorithms, but as a broad class of algorithms inspired by the diffusion of the ideas and 
composed of multiple existing operators, the community started showing an increasing 
attention towards these algorithmic structures as a general guideline for addressing 
specific problems. In this chapter, our focus is on the design of memetic frameworks for 
solving continuous complex optimization problems. Some key factors responsible for 
the success of these frameworks are identified and presented into two levels of design as 
guideline for the practitioners. 
 
1. Introduction 
 
Optimization is a classical problem that arises in various domains ranging from physics, 
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biology, engineering designs to a plethora of other real world applications found in our 
everyday life. The design of complex systems encompasses a wide range of activities 
whose goal is nonetheless to find the optimum characteristics of a product before it is 
manufactured. The complexity of today’s problems can be attributed to challenges 
involving non-linearity, high multi-modality, uncertainty and computationally 
expensive problems and other real-time demands. In such scenarios, the use of 
conventional methods is often deemed as ineffective or inadequate, in general, mainly 
due to the lack of sufficient prior knowledge (hypotheses) available on the problem to 
solve. For example, the analytical expression of the merit function(s) to minimize, often 
also known as the cost or objective or fitness function in evolutionary computation, are 
often unavailable. Further, it is becoming a common practice that the objective 
function(s) manifest in the form of computational simulations or through physical 
experiments/measurements. Under such conditions, which is typical of today’s real-
world complex problems, the optimization must be conducted by treating the objective 
functions as “black boxes” to optimize. For these reasons, the field of computational 
intelligence (CI) has taken flight and for the last decades served in a large part of 
computer science and engineering literature as a field that devotes to the development 
and implementations of various new methodologies for solving complex problems 
successfully.  
 
The field of optimization is a study that has been embraced extensively by researchers 
from various disciplines, with many algorithms and implementations that are now made 
available and used in the different communities. Early well established meta-heuristics 
and CI approaches include Simulated Annealing, Evolutionary and Swarm Intelligence. 
While separate paradigms have been independently developed in parallel tracks, a part 
of the computer science and engineering community has realized that proper 
combination of nature-inspired and culture-inspired operators can lead to the generation 
of efficient optimizers which may outperform, by several orders of magnitude, each of 
its stand-alone components. Among the early attempts to demonstrate this was reported 
in the 1980’s in the name of hybrid evolutionary algorithms or memetic algorithms, see 
(Neri et al, 2012; Ong et al, 2010; Chen et al 2011; Goh et al 2009) for some excellent 
expositions of the field.  
 
Memetic Algorithm (MA), also commonly known as hybrid EAs, Baldwinian EAs, 
Lamarckian EAs, or genetic local search, represents a recent established field of CI that 
has attracted increasing research interest where a growing number of publications 
appearing in a plethora of international journals and conference proceedings has been 
noted. The earliest form of Memetic Algorithms (Goldberg, 1989; Moscato, 1989; 
Moscato 1999; Smith et al. 2009) was first introduced as a marriage between 
population-based global search and individual learning, where the latter is also often 
referred to as a local search or meme, capable of refinement or learning. Fundamentally 
rooted on Darwinian principles of natural evolution and Dawkins notion of a meme, 
many modern evolutionary algorithms in the field of computational intelligence have 
been designed and crafted specifically for addressing particular problems or domains, 
and with significant success reported (Ishibuchi et al. 2003; Krasnogor et al. 2002; Ong 
at al. 2003; Ong at al. 2006; Tang et al. 2009, Tirronen at al., 2008). Memetic 
algorithms have been used successfully to solve a wide variety of engineering design 
problems and often shown to generate higher quality solutions more efficiently than 
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canonical evolutionary algorithms (Hart 1994; Ong et al. 2004; Lewis et al. 2007; Wang 
et al. 2010). A discussion on the different depictions of MAs inspired from Dawkins’s 
theory of Universal Darwinism is provided in (Nguyen et al. 2008).  
 
In parallel to the MA definition and early diffusion, a strictly related concept, i.e. hyper-
heuristic, was defined. A hyper-heuristic is an algorithm composed of multiple 
algorithmic components coordinated by a supervisor element, this element can be a 
heuristic itself, or, in modern implementations, a machine learning technique. Both, 
hyper-heuristics and MAs are thus optimizers composed of multiple search operators to 
perform the search. Although both the algorithms are heterogeneous structures, the 
characterization of a MA is generally about the algorithmic components building while 
the characterization of hyper-heuristics is on the coordination rule of the components. 
Recent developments of memetic computing can lead to the fusion of (canonical) 
memetic algorithms and meta-heuristics, especially of the adaptive rules in the 
coordination mechanisms. As such, the term “memetic algorithm” shall be used to 
represent these fields of research throughout this chapter.  
 
The importance and diffusion of MAs should be put into relationship with the No Free 
Lunch Theorem (NFLT), see (Wolpert at al. 1997). The NFLT proves that the average 
performance of any pair of algorithms A  and B  across all possible problems is 
identical. Thus, if an algorithm performs well on a certain class of problems, then it 
necessarily pays for that with degraded performance on the set of all remaining 
problems, as this is the only way that all algorithms can have the same performance 
averaged over all functions. Strictly speaking, the proof of NFLT is made under the 
hypothesis that both the algorithms A   and B   are non-revisiting, i.e., the algorithms do 
not perform the fitness evaluation of the same candidate solution more often than once 
during the optimization run. Although this hypothesis is de facto not respected for most 
of the computational intelligence optimization algorithms, the concept that there is no 
universal optimizer had a significant impact on the scientific community. For decades, 
researchers in optimization attempted to design algorithms having a superior 
performance with respect to all the other algorithms present in literature. This approach 
is visible in many famous texts published in those years, e.g., (Goldberg 1989). After 
the NFLT diffusion, researchers in optimization had to dramatically change their view 
about the subject. More specifically, it has become important to understand the 
relationship between the components of the proposed algorithm A   and a given 
optimization problem f . Thus, the problem f   became the starting point for building 
up a suitable algorithm. The optimization algorithm needs to specifically address the 
features of problem f . 
 
Since MAs were not proposed as specific optimization algorithms, but as a broad class 
of algorithms inspired by the diffusion of the ideas and composed of multiple existing 
operators, the community started showing an increasing attention towards these 
algorithmic structures as a general guideline for addressing specific problems.  
 
In this chapter, our focus is on the design of memetic frameworks for solving 
continuous complex optimization problems. Some key factors responsible for the 
success of these frameworks are identified and presented into two levels of design as 
guideline for the practitioners. It is well established that the main purpose of designing a 
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successful MA hybrid search lies in balancing well between generality (through 
stochastic variations) and problem specificity (through individual learning) (Hart et al. 
2004; Moscato 1999; Nguyen et al. 2008, Paenke et al. 2009; Renders et al. 1994). As 
such, the micro-level design of memetic framework described in Section 2 discusses 
several important algorithmic configurations responsible for such balance, including the 
choice of learning mode, the learning frequency, the learning intensity in term of 
computational budget and others. On the other hand, the macro-level design focuses 
more on the algorithmic component aspects of the framework, i.e., stochastic variation 
and individual learning operators. In particular, representative memetic operators are 
reviewed and discussed in Sections 3.1 and 3.2. Besides, several state-of-the-art 
coordination mechanisms of memetic operators are also included in Section 3.3 as some 
recent advancing developments of memetic algorithms. Last but not least, Section 4 
concludes the chapter and outlines some potential notable future research directions of 
memetic computation.  
 
2. Micro-level Design of Memetic Framework 
 
An outline of the basic Memetic Algorithm composed of the stochastic variation 
operators and individual learning to refine the offspring solutions is given in Algorithm 
2. In particular, stochastic variation operators, such as crossover and mutation in genetic 
algorithm, present as components of a population-based (or global search) algorithm. 
On the other hand, individual-based search operator, also known better as local search, 
individual learning or lifetime learning, involves the process of searching for an 
improved solution (if it exists), starting from a given vector of decision variables 
(Bunday 1995).  
 
In the first step, a population of individuals is initialized either randomly or using design 
of experiment techniques such as Latin hypercube sampling. The evaluated population 
of individuals then undergoes natural selection, for instance, via fitness-proportional or 
tournament selection. In Algorithm 2, the selection and replacement schemes emulate 
the effects of “the survival of the fittest” in natural selection. Replacement methods are 
similar to parent selection operators that determine which individuals shall survive 
across the generations. A great number of selection operators have been proposed in the 
literature (Back et al. 1997; Goldberg et al. 1991), extending from fitness proportional 
and stochastic universal selections (Baker 1987) to tournament selection (Brindle 1981) 
and Boltzmann selection (Cai et al. 2006). The choice of selection operator would 
largely depend on the selection pressure desired in the search 
 
Each individual x  in the reproduction pool is evolved to arrive at offspring y using 
stochastic variation operators such as crossover and mutation. The criteria for offspring 
y  or the subset of individuals ilΩ  that undergo individual learning are defined by the 
selection schemes (i.e., random sampling, stratified sampling or elitism) and/or the 
frequency of individual learning parameter ilf , where the latter determines how often 
individual learning is used in the population per generation. Individual learning ( )L y  is 
applied on the selected offspring y  with a computational budget of ilC  to arrive at the 
refined solution z . The parent population are then replaced by the offspring to form a 
new population and the entire process repeats until the specified stopping criteria is 
satisfied.  

 60  



COMPUTATIONAL INTELLIGENCE – Vol. II - Memetic Algorithms - Minh NghiaLe, Ferrante Neri, Yew Soon Ong   
 
 

©Encyclopedia of Life Support Systems (EOLSS) 

Algorithm 1 Memetic Algorithm 
1: Generate an initial population 
2: while Stopping conditions are not satisfied do 
3: Evaluate all individuals in the population 
4: Select individuals for the parents pool Pt via selection operator S(.) 
5: for each individual x in P do 
6: Evolve x to offspring y according to stochastic variation operators 
7: if y selected to undergo individual learning then 
8: Refine y to z through individual learning operator L(y) within the computational 
budget Cil 
9: Proceed in the spirit of Lamarckian or Baldwinian learning 
10: end if 
11: Replace offspring into the population 
12: end for 
13: end while 

 

 
 

Figure 1. Micro-level Design of Memetic Algorithm. 
 

Based on the canonical MA presented in Algorithm 2, the next subsections shall discuss 
some important algorithmic configurations responsible for the balance between global 
search and local searches (Hart et al. 2004; Nguyen et al 2008; Nguyen et al. 2009;, Ong 
et al. 2010;  Chen et al. 2011; Neri et al. 2012), defined in this chapter as the micro-
level design of memetic framework and depicted in Fig. 1. 
 
2.1. Modes of Learning 
 
It is worth noting that individual learning can be incorporated in memetic algorithm as a 
form of population initialization, i.e., before the population-based search, to enhance the 
search performance as contrast to the typically-used simple random population 
initialization scheme. For interleaved hybrid procedures, on the other hand, individual 
learning is conducted after undergoing the stochastic variation or reproduction 
operator(s). In other hybrids, refinement is incorporated after the population-based 
search as a form of post-processing to fine-tune or improve the precision of the solution 
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found by the EA. From the literature, the interleaved hybrid procedures are the most 
common and popular configuration used in MA, as outlined in Algorithm 2.  
 
Next, let us consider a classical MA composing of an evolutionary framework and an 
individual learning phase (local search) that periodically selects an individual from the 
population with the attempt to enhance it. When the output of the local search, i.e., the 
improved solution, is produced a natural question arises: what to do with the improved 
solution and how to pass this new piece of information to the population of candidate 
solutions, while even facilitating its replications across generations?  
 
In the literature, two basic modes of individual learning (or inheritance schemes) are 
often discussed, namely, Lamarckian and Baldwinian learning (Ong et al. 2006) (line 8 
of Algorithm 2). Lamarckian learning forces the genotype to reflect the result of 
improvement in individual learning by placing the locally improved individual back into 
the population to compete for reproductive opportunities (Houck et al. 1996; Krasnogor 
2002; Ong et al. 2004). In diverse contexts, Lamarckian memetic algorithms have also 
been used under the name of hybrid evolutionary algorithm, Lamarckian evolutionary 
algorithm, or genetic local search. Baldwinian learning, on the other hand, only alters 
the fitness of the individuals and the improved genotype is not encoded back into the 
population. Let x  and impx  denote the initial and improved solutions after undergoing 
refinement. Algorithmically, Lamarckian learning returns ( )( )imp imp, fx x  to the 

population while Baldwinian learning return ( )( )imp, fx x  instead.  

 
Although Lamarck’s theory of evolution has generated controversies and doubts from 
biology, the potentials and contributions of Lamarckian learning in computational 
evolutionary systems have been significant (Jablonka et al. 1995; Ho 1996). It is worth 
emphasizing that most successful MAs to date are designed in the spirit of Lamarckian 
learning which exhibits clear advantage on problems in non-changing environments 
(Merz 2000; Merz 2004; Whitley et al. 1994). On the other hand, Baldwinian learning is 
thought as a mechanism that does not disturb the evolution of the solutions nor impedes 
the diversity of the population. As such, Baldwinian learning is deemed as more 
appropriate for problems in dynamic or uncertain environments (Ong et al. 2006; 
Plaenke et al. 2007; Sasaki et al. 1997; Sendhoff et al. 1999). A comparative study, for 
instance, has also been conducted in (Whitley et al. 1994).  
 
2.2. Algorithmic Parameters 
 
From a survey of the field (Krasnogor et al. 2005), the basic configuration of a memetic 
algorithm can be summarized (but not limited to) by three core parameters  
• The selection scheme for constructing the subset of individuals ilΩ  that should 

undergo individual learning, such as random sampling, stratified sampling or elitism 
(Nguyen et al. 2007).  

• Frequency of individual learning ilf , which defines how often individual learning is 
applied on the population throughout the search or the proportion of the population 
that will undergo individual learning in each generation.  
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• The maximum computational budget or learning intensity ilC  allocated for the 
individual learning phase defines how long each learning process should proceed for. 
A larger value of  ilC  gives more computational budget or greater emphasis on 
improving each individual chromosomes, thus leading to higher level of convergence 
or accuracy in the solution quality.  

 
One of the conventional topics pertinent to the MA hybrid design is to identify which 
individuals of the search population should undergo individual learning, where for 
instance fitness and distribution-based strategies have been proposed by (Land 1998) 
and (Nguyen et al. 2009). It is worth to highlight the empirical study in (Nguyen et al. 
2007) which showed that the choice of selection schemes in MA largely depends on the 
characteristics of objective function with less impact by the individual learning 
intensities.  
 
On the question pertaining to how often individual learning should be used, the effect of 
individual learning on MA search was investigated in (Hart 1994) where various 
configurations at different stages of the search were considered. As an empirical 
guideline, (Nguyen et al. 2007) noted that it may be appropriate to undergo individual 
learning on half of the MA population while highlighted that under some given fixed 
computational budget, a good balance between ilC  and ilf  is necessary to ensure 
superior search performance in the MA. In this direction, (Ku et al. 200) also suggested 
to apply learning on every individual when the computational complexity of the 
learning procedure is low. Schemes to adapt the frequency of individual learning based 
on search diversity and fitness distribution criteria have also been considered by Molina 
et al. in (Lozano et al. 2004; Molina et al. 2008).  
 
To address the overall balance of stochastic variation and individual learning in search, 
a theoretical upper bound on the computational budget to allocate was proposed in 
(Nguyen at al. 2009). The bound provided the means to adapt various design issues of 
MA simultaneously, and at runtime, from which individuals that should undergo 
individual learning, to the amount of computational budget allocated for learning. In 
addition, the concept of local search chains to adapt the intensity of individual learning 
was also introduced in (Molina et al. 2010). To alleviate the potentially high intensity 
and computational budget incurred in individual learning, especially when dealing with 
real world complex problems plagued with computationally expensive objective 
functions, management schemes to adapt the use of approximation models or surrogates 
in lieu of the original objective functions (Jin 2005; Lim et al. 2010) were also 
considered. 
 
3. Macro-level Design of Memetic Framework 
 
In memetic algorithms, as represented in Fig. 2, researchers have been exploring on 
various hybridizations of search operators towards the development and manual crafting 
of specialized algorithms that solve a specific problem or a set of problems effectively. 
The success of memetic algorithm is thus often very much reliance on the degree of 
domain knowledge the human expertise holds. 
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Figure 2. Macro-level Design of Memetic Algorithm. 
 
For instance, the hybridizations of genetic operators with individual-based search 
methods have manifested as hybrid real-coded Genetic Algorithm with female and male 
differentiation (RCGA-FMD)(Garcia-Martinez et al. 2005), approximate probabilistic 
memetic framework based on GA-DSCG (APrMF) (Nguyen at al. 2009), and memetic 
algorithm with local search chaining (MA-LSCh-CMA) (Molina et al. 2008). A review 
of different hybridizations of genetic algorithm with diverse individual learning 
strategies that employ gradient information is reported in (Li et al  2008). On the other 
hand, accelerating differential evolution using an adaptive local search (DEahcSPX) 
(Noman et al. 2008) represents an example of combining DE’s stochastic operators with 
local search to accelerate the search progress. Particle Swarm CMA-ES (Muller et al. 
2009) denotes an example of the hybrid MA in which CMA-ES is employed as the 
individual learning procedure with the PSO population-based search. Another notable 
example is the estimation of distribution algorithm (EDA) with an ant-miner local 
search proposed in (Aickelin et al. 2006) for solving the nurse rostering problem.  
 
To assist practitioner in designing successful MAs, a brief review of representative 
stochastic variation operators and individual learning schemes as the candidates for 
memetic operators is presented in the next subsections, followed by the discussion on 
several state-of-the-art coordination mechanisms of memetic operators that represents 
the recent advancing developments of memetic algorithms.  
 
3.1. Stochastic Variation Operators 
 
In the subsequent subsections, some notable forms of stochastic variation operators 
available in the literature of population-based algorithms are presented and discussed.  
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