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Summary 
 
Neuromorphic engineering is an interdisciplinary field that attempts to map the brain’s 
computational principles onto a physical substrate. Neuromorphic systems often 
combine brain-inspired computation and processing devices and use biomimetic sensors 
for data input. The components are implemented as VLSI integrated circuits or systems-
on-chip (SoCs), fabricated in state-of-the-art semiconductor fabrication technologies, 
and are assembled into embedded multi-chip systems to be integrated into a variety of 
application platforms from humanoid robots to unmanned aerial vehicles (UAVs).  
 
This chapter discusses the most common bio-inspired communication strategies, the 
principles of computation using neuromorphic Very Large Scale Integration (VLSI) 
neurons, and peripheral sensory transduction and processing of the kind performed by 
biological retinas and cochleas. 
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1. Introduction 
 
Despite all the impressive progress made during the last decades in the fields of 
information technology, microelectronics and computer science, artificial sensory and 
information processing systems are still much less effective in dealing with real-world 
tasks than their biological counterparts. Even small insects outperform the most 
powerful computers in routine functions involving e.g. real-time sensory data 
processing, perception tasks and motor control and are, most strikingly, orders of 
magnitude more energy-efficient in completing these tasks. The reasons for the superior 
performance of biological systems are only partially understood, but it is apparent that 
the hardware architecture and the style of computation are fundamentally different from 
what is state-of-the-art in artificial clocked information processing. 
 
Very generally speaking, biological neural systems rely on a large number of relatively 
simple, slow and unreliable processing elements and obtain performance and robustness 
from a massively parallel principle of operation and a high level of redundancy where 
the failure of single elements usually does not induce any observable system 
performance degradation. Studying and understanding the computational principles of 
the brain and how they can be exploited to build intelligent artificial systems are 
fundamental for devising a new generations of neuromorphic systems, that, as the 
biological systems they model, are adaptive, fault-tolerant and scalable, and process 
information using energy-efficient, asynchronous, event-driven methods. 
 
Neuromorphic engineering is an interdisciplinary field that attempts to map the brain’s 
computational principles onto a physical substrate. Carver Mead, who has pioneered the 
field in the late 1980’s, showed that the physics governing the Complementary Metal–
Oxide–Semiconductor (CMOS) transistor operating in the sub-threshold regime is 
analogous to that of the trans-membrane ionic channel (Mead, 1989a). Exploiting such 
physical similarities between the electrical and the biological fundamental primitives of 
computation allows constructing electronic circuits that implement e.g. models of 
voltage-controlled neurons and synapses, or biological computational functions such as 
photo-transduction, multiplication, inhibition, correlation, thresholding, or winner-take-
all selection. 
 
Neuromorphic systems often consist of a hybrid of analog and digital technologies. In 
this chapter we will focus on neuromorphic devices and systems based on analog neural 
circuits. These neural circuits perform non-linear analog computation (e.g. a non-linear 
integration of impinging synaptic currents or external cues) and the generation of digital 
events representing neural action potentials. In this way, the communication can be 
realized in an event-based, power-efficient fashion. Because computations are 
instantiated on analog circuits operating in parallel, these systems can be designed to 
operate in real-time, thereby enabling them to easily interact with real-world 
environments. Neuromorphic devices are easily scalable because many of the 
computations taking place in the neurons can be captured by simple circuits (e.g. the 
Integrate & Fire (I&F) neuron) which can be densely implemented on the chip, and 
multiple chips can be combined to form a large multi-chip system using event-based 
communication. Because these exploit the analog properties of the substrate, they are 
potentially more power-efficient than general-purpose digital processing technologies. 
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In this chapter, we will discuss the most common event-based communication 
strategies, the principles of computation using neuromorphic Very Large Scale 
Integration (VLSI) neurons, and peripheral sensory transduction and processing of the 
kind performed by biological retinas and cochleas. 
 
2. Neuromorphic Communication 
 
To build complex neuromorphic systems with significant computational power and high 
flexibility we need to resort to multi-chip systems. For example, a common strategy is 
to separate the sensing stage (silicon retinas, silicon cochleas) from further computing 
stages (spiking neural networks), transmitting signals between chips. In this case, the 
main advantages are the possibility of achieving higher density in the sensing stage, 
allowing convergence of the output of multiple sensors to a single processing stage, 
divergence from one sensor to multiple processing modules, and constructing 
hierarchical processing stages using multiple instances of the same chip. However, in 
these systems the connectivity across chip boundaries is severely limited by the small 
number of input-output connections available with standard chip packaging technology 
(of the order of a few hundreds pins). 
 

 
 

Figure 1. Schematic diagram of an AER chip-to-chip communication example (adapted 
from (Deiss et al., 1998)). The address event bus transmits the encoded address of a 

sending node on the source chip as soon as it generates an event. On the receiver chip, 
the incoming address events are decoded and transmitted to the corresponding receiving 

node. 
 

One strategy for overcoming this problem is to use time-division multiplexing. The 
activity of analog VLSI neurons, as for biological neurons, is typically low frequency, 
from a few Hz to a couple of hundred Hz. The speed of digital buses (gigahertz) can be 
traded for connectivity among spiking networks by sharing a few wires to communicate 
(infrequent) events. If the signals to be transmitted across chips are encoded by spikes 
(i.e. stereotyped non-clocked digital pulses), as it is the case for most neuromorphic 
devices, an efficient communication protocol that can be used is based on the Address 
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Event Representation (AER) (Boahen, 1998; Deiss et al, 1998; Lazzaro et al, 1993; 
Mahowald, 1992a). In this representation, input and output signals are real-time, digital 
events that carry analog information in their temporal structure (inter-spike intervals). 
 
The AER uses binary-encoded words to represent address events and send them on an 
asynchronous communication channel. Each word encodes the address of the sending 
node (see Fig. 1). Events generated by sending nodes are communicated through the 
channel to one or more external receivers. Different approaches are available for the 
transfer of the data between the transmitting array of neurons and the channel (e.g. 
sequential scanning, ALOHA access protocol, priority encoder). A comparative study of 
access topologies for Address Event (AE) communication channels has been presented 
in Culurciello and Andreou (2003). 
 
2.1. Arbitrated AER for Multi-chip Systems 
 
Typical topologies and sizes of most recent neuromorphic implementations, with 
sending nodes in the order of hundreds of thousands, encourage the choice of arbitrated 
AER as opposed to other access topologies. 
 

 
 

Figure 2. Point-to-Point handshake protocol. A node within the sender chip initiates a 
handshake cycle by prompting the sender to make a request (initiation signal). After 

making a request, the sender puts the data on the address event bus. Since the address 
lines may take different amounts of time to stabilize a data valid line is used to signal 

when the data on the address bus are set. The receiver acknowledges receipt of the data 
and the initiation signal is reset to let the sender drop the request and complete the 

handshake cycle. 
 
The arbitrated AER protocol originally proposed by Mahowald (1992a) is for single 
sender, single receiver systems. This is known as the Point-to-Point (P2P) AER protocol 
(AER-Caltech-Memo, 1993). The process of sending events from one chip to the other 
is regulated by a handshake (see Fig. 2). A simple handshake involves two chips: 
a sender chip and a receiver chip. A node in the sender chip initiates an event by 
activating a request signal. The receiver chip must answer the request by activating an 
acknowledge signal, after which it reads the data on the address-event bus. After the 
acknowledge signal is activated, the sender chip removes the request to let the receiver 
chip remove the acknowledge signal. The handshake cycle is completed when the 
acknowledge signal is removed by the receiver chip, and another cycle can be initiated 
by a node in the sender chip. 
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Systems containing more than two AER chips can be assembled using additional, 
offchip arbitration. These off-chip arbiters can also use lookup-tables and processing 
elements to remap, time-stamp and perform digital operations on address-events (Dante 
et al, 2005; Deiss et al., 1998). The P2P protocol is not suitable for multi-chip systems 
because the sender drives the address bus, shared by all senders in this case, as a 
consequence of activating the request. In a multi-chip system only the acknowledged 
sender should drive the address bus, to prevent data corruption in case two senders 
attempt to send an event at the same time. 
 
Deiss et al. (1998) proposed the SCX-1 Local Address-Event Bus (LAEB) for multi-
chip AER systems (SCX stands for Silicon Cortex, see Section 2.2). The authors 
presented a communication protocol for multiple senders and multiple receivers on the 
same address bus. Each chip connected to the local address bus has a dedicated pair of 
request and acknowledge lines. The handshake protocol is represented in Fig. 3. 
 

 

 
Figure 3. SCX handshake protocol. A node within the sender chip initiates a handshake 
cycle by prompting the sender to make a request. The sender can write the data on the 
AE bus only after the receiver acknowledges. The handshake cycle is complete only 

when both request and acknowledge are reset. 
 
A recent successful evolution of the AER is the burst-mode “word-serial" address-event 
link proposed by Boahen (2004c, 2004b, 2004a). This design uses address-events to 
communicate between cells in the same or in different bidimensional arrays. Row and 
column addresses are not transmitted in parallel, as in previous designs, but serially. 
The loss in speed due to serial transmission is compensated by not retransmitting the 
row address if the next event is from the same row: row activity is encoded in a burst 
consisting of the row address followed by a column address for each active cell. Multi-
chip systems can be built in a chain extending the single-transmitter-single-receiver link 
using mergers and splitters. The merger circuit combines the address events at its input 
with address events generated by the neuron array and sends them off chip via a 
transmitter. The splitter circuit makes two copies of the AER events appearing at its 
input. See (Choi et al, 2005) for an example of such architecture. 
 
2.2. AER Hardware Infrastructures 
 
The hardware infrastructure is an essential instrument to fully characterize 
neuromorphic prototype chips. This infrastructure has to provide ways to stimulate and 
monitor the activity of a single chip. In addition, it has to be able to interface several 
chips and dynamically define the connectivity among them, implementing complex 
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multi-chip systems. Furthermore, it should allow logging of data from all chips, 
allowing off-line analysis. 
 
Different approaches can be pursued to build neuromorphic multi-chip systems: 
dedicated full-custom circuits can be implemented to support specific AER devices, or a 
general-purpose full-custom architecture can be designed to host any AER device 
compliant to a certain standard. Several multi-chip systems have been implemented 
with both approaches. Examples of dedicated full-custom multi-chip systems are 
described in Choi et al. (2005) and Higgins & Koch (2000). These systems comprise 
EPROMs or FPGAs for remapping of the addresses, but they do not include any device 
to store the activity of the AER chips (requiring a separate acquisition instrument, 
usually a logic analyzer, to look at the system behavior) or to stimulate the chips with 
synthetic trains of spikes. 
 
In the late 1990’s and early 2000’s several research groups (e.g. (Deiss et al., 1998; 
Serrano-Gotarredona et al., 2005; Chicca et al., 2007)) devoted considerable efforts to 
the development of general architectures to interconnect, monitor and stimulate several 
AER devices. The first example of a general-purpose multi-sender multi-receiver 
communication framework for AER devices, called Silicon CorteX (SCX), is the one 
proposed by Deiss et al. (1998). SCX is a fully-arbitrated AE infrastructure which can 
support up to six AER chips; larger systems can be assembled by linking together 
multiple boards. SCX provides a method of building a distributed network of local 
busses sufficient to build an indefinitely large system, coordinating the activity of 
multiple sender/receiver chips on a common bus. The user can configure arbitrary 
connections between neurons, set analog parameters and monitor the activity of the 
neurons. 
 
In the context of the CAVIAR project (CAVIAR is the acronym of the European funded 
project IST–2001–34124: Convolution AER Vision Architecture for Real Time), 
Serrano- Gotarredona et al. (2005) proposed a distributed system in which a USB-AER 
board can be programmed to perform one of five different functions: (1) mapping of 
addresses, (2) capture of timestamped AEs, (3) reproduction of time-stamped sequences 
of AEs in real time, (4) transformation of sequence of frames into AEs in real time, (5) 
histogram AEs into sequences of frames in real time. Additional PCBs are used to 
record AE traffic on the AER bus; split one AER bus into 2, 3 or 4 buses; merge 2, 3 or 
4 AER busses into a single bus; and capture time-stamped AEs to a computer. 
 
The hardware infrastructure described by Chicca et al. (2007) consisted of a single full 
custom general purpose PCI board (the PCI-AER board) hosted in a workstation, that 
allowed connection of up to four sender and four receiver chips, arbitrary intra- and 
interchip connectivity, stimulation of receiver chips with synthetic trains of spikes, 
monitoring and logging for the activity of all sender devices. Because of the 
requirement of a host workstation this system was not as portable as the CAVIAR 
system, nevertheless it proved to be very convenient for rapid prototyping tests and 
online reconfigurability. 
 
An alternative but comparable infrastructure composed of an AER mapper and a 
dedicated serial AER interface with flow control was proposed more recently (Fasnacht 
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et al, 2008; Fasnacht & Indiveri, 2011). This system provided improved figures in terms 
of achievable event rates and minimization of event latencies. 
 
Large-scale AER communication architectures (e.g. the SCX) allow to prototype 
multineuron experiments, and to combine with other neuromorphic devices such as 
neuromorphic sensors. Given the rapidly increasing size of the emulated neural 
networks, nowadays AER infrastructures are often faced with scalability problems, 
which are being addressed with different strategies by several research groups. 
 
At Stanford University, Kwabena Boahen’s and colleagues developed programmable 
analog neurocore chips which emulate over 65’000 neurons each and are assembled on 
a 16 chips array containing over a million neurons (Neurogrid project, (Silver, Boahen, 
Grillner, Kopell, & Olsen, 2007)). An AER packet network is used to communicate 
spikes between chips. A binary tree organization of the chips grid is supported by local 
routers with dedicated RAMs for storing connectivity information. The connectivity 
pattern in the Neurogrid is optimal for implementing cortical columns. 
 
Gert Cauwenberghs and colleagues (University of California at San Diego) have 
designed a neuromorphic chip named Integrate and Fire Array Transceiver (IFAT) and 
the related routing architecture Hierarchical AER IFAT (HiAER-IFAT). A 250’000 
neurons system has been demonstrated with this hardware (Park et al, 2012). They 
extended the AER protocol to a fractal hierarchical architecture, with repeated address 
buses and communication relays at varying spatial scales.  
 
The European FACETS/BrainScaleS project (FACETS, 2005–2009) targets wafer-scale 
implementations of spiking neural networks. The spiking neurons are designed to 
operate about 1000 to 10000 times faster than biological neurons Schemmel et al. 
(2008), so they can potentially provide a more power-efficient alternative to software 
simulations of spiking neural networks performed on digital supercomputers. The 
communication infrastructure for the waferscale neuromorphic system developed within 
this project (Scholze et al., 2011) consists of a source-synchronous high-speed serial 
packet communication of timestamped spike events. Packed-based transmission was 
chosen to deal with the challenging requirement of large number of sources and targets 
typical of a waferscale system. 
 
3. Sensing 
 
Representing a new paradigm for the processing of sensor signals, neuromorphic 
systems have succeeded in the emulation of sensory signal acquisition and transduction. 
Neuromorphic and bio-inspired sensors, like their biological models, implement event-
driven processing and feature extraction directly at the sensory device level, massively 
reducing data redundancy and consequently the demands on transmission power, 
bandwidth, memory and post-processing power. The visual and auditory senses have 
been tackled early by the neuromorphic community, yielding a variety of bio-inspired 
vision sensors (silicon retinas) and auditory sensors (silicon cochleas). Recently, also 
event-based olfactory and haptic sensory devices are being developed. Neuromorphic 
electronic devices are usually implemented as VLSI integrated circuits or systems-on-
chip (SoCs) on planar silicon, the mainstream technology used for fabricating the 
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ubiquitous microchips that can be found in practically every modern electronically 
operated device (Fig. 4). 
 
One of the first working neuromorphic electronic devices was modeled after a part of 
the human neural system that has been subject to extensive studies since decades – the 
retina. The construction of an artificial silicon retina has been a primary target of the 
neuromorphic community from the very beginning. Mahowald and Mead reproduced 
the first three of the retina’s five layers on silicon in 1989 (Mahowald, 1992b). Zaghloul 
and Boahen implemented simplified models of all five layers of the retina on a silicon 
chip starting in 2001 (Zaghloul & Boahen, 2004a, 2004b). These chips generate, in real 
time, outputs that correspond directly to signals observed in the corresponding levels of 
biological retinas. 
 

 
 

Figure 4. Microscope photograph of a “silicon retina” sensor, part of the pixel array at 
higher magnification, and the CMOS layout of one pixel cell (Posch et al., 2011). 

 
3.1. AER Vision Sensors - Silicon Retinas 
 
The first silicon retina of Mahowald and Mead models the outer-plexiform layer (OPL) 
of the vertebrate retina and contains artificial cones, horizontal cells and bipolar cells. A 
resistive network computes a spatiotemporal average that is used as a reference point for 
the system. By feedback to the photoreceptors, the network signal balances the 
photocurrent over several orders of magnitude. The silicon retina’s response to spatial 
and temporal changing images captures much of the complex behavior observed in the 
OPL. Like its biological counterpart, the silicon retina reduces the bandwidth needed to 
communicate reliable information by subtracting average intensity levels from the 
image and reporting only spatial and temporal changes (Mahowald, 1992b; Mead, 
1989a; Mahowald, 1994). 
 
A next generation silicon retina chip by Zaghloul and Boahen modeled all five layers of 
the vertebrate retina, directly emulating the visual messages that the ganglion cells, the 
retina’s output neurons, send to the brain. The design incorporates both sustained and 
transient types of cells with adaptive spatial and temporal filtering and captures several 
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