
UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Hardware Description - Mehran M. Massoumi

©Encyclopedia of Life Support Systems (EOLSS)

HARDWARE DESCRIPTION

Mehran M. Massoumi,
HDL Research & Development, Averant Inc., USA

Keywords: HDL, Hardware Language, Digital Design, Logic Design, RTL, Register
Transfer, VHDL, Verilog, VLSI, Electronic CAD.

Contents

1. Introduction
2. A Historical Note
3. Levels of Abstraction
4. Fundamental Characteristics of a Description Language
5. Hardware Description and Concurrency
5.1 Model of time and Simulation Cycle
5.2 Drivers and Resolution Function
5.3 Data Types
6. Hierarchy
6.1 Language Primitives
7. Procedural Bodies
7.1 Memory Modeling
7.2 Modeling Finite State Machines
8. Parameterization
9. Delay Modeling
10.Concluding Remarks
Bibliography

1. Introduction

Throughout the decades of digital computer history, various notations have been
developed for capturing the logical behavior of digital circuits at different levels of
abstraction. The primary purpose of these notations has been to deemphasize the
electronic and fabrication aspects of the design and therefore facilitate documentation,
analysis and synthesis of large complex systems. Schematics, Boolean equations, timing
charts, state transition tables, block diagrams, and hardware description languages are
examples of such notations. Although most of these approaches are being used in
practice today, hardware description languages have gained significant acceptance
starting from late1980s.

A Hardware Description Language (HDL henceforth) is a set of notations, similar to
software programming languages, used for modeling the logical function of digital
circuits and systems. Compared to alternate forms of design capture, it has been shown,
in practice, that the use of HDLs shortens the design cycle and yields more robust
realizations. Many concede that without HDLs, the design of today’s complex circuits
would not be possible in a reasonable amount of time. A hardware description can serve
as a principal means of communication between members of a design team. The
conciseness and readability of HDLs minimize the need for any natural language, and

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Hardware Description - Mehran M. Massoumi

©Encyclopedia of Life Support Systems (EOLSS)

more error prone, discussion of the design. Furthermore, a hardware description can be
used as an input to a variety of analysis and synthesis tools. These tools greatly facilitate
the verification and realization of the described circuits. Similar to a software
programming language where the target machine code is hidden from the programmer,
HDLs are independent of any particular target circuit technology. This feature
contributes to improved readability and design management. It should be noted that an
HDL is a language and only a language and has no apparent algebraic structure in terms
of guiding the user to a minimal implementation. However, with practice, the designer
will readily arrive at modeling techniques that yield more efficient realizations.

This writing is an introduction to hardware description and languages. No prior
exposure is assumed, although proficiency in Boolean Algebra, combinational logic
circuits, and sequential circuits is a prerequisite. Furthermore, knowledge of at least one
software programming language helps in better understanding of the HDL concepts. To
begin with, a short historical note on the evolution of description languages and the
standardization efforts will be presented. Subsequently, the levels of abstraction and the
fundamental elements of a description language will be discussed. The standard
language Verilog will be used as a vehicle to present various modeling concepts and
techniques, including concurrency, procedural descriptions, and modeling of various
hardware components. Verilog has been selected for a number of reasons: (1) it is a
widely used standard language, (2) it is simple and intuitive and therefore does not
overwhelm the reader with esoteric semantic details, and (3) it contains a wide
repertoire of language features that allow description of complex systems. However, no
attempt will be made in this writing to cover the Verilog language in its entirety. A
complete description can be found in the references [IEE96, Nav99, Tho96].

2. A Historical Note

The concept of a hardware description language as a medium for design capture was
first introduced in the1950s, but wide adoption by the design community did not start
until after 1985. Historically, the development of software programming languages
stimulated the evolution of HDLs. One example, among many, is the programming
language APL [Ive62] which was used as a form of design entry for a logic automation
system developed at IBM in the early 1960s. The notational conventions of APL were
later used by researchers at the University of Arizona to design AHPL (A Hardware
Programming Language) [Hil74]. Since its introduction in the early 1970s, AHPL was
hardly used in non-academic applications but served as an effective teaching tool
[Hil87] in classroom environments. In the three decades starting from 1960 many HDLs
were introduced including DDL[Dul69], ISPS[Bar81], and Zeus[Lie83]. However, the
use of these languages rarely exceeded research and academic applications.

Partly in reaction to the proliferation of HDLs and partly due to its own needs, in 1980,
the U.S. Department of Defense initiated the development of VHDL as part of its
VHSIC program (Very High Speed Integrated Circuits; The name VHDL is derived
from VHSIC Hardware Description Language). The overall objective of this effort was
to design a single language that will allow the design, documentation, and analysis of
hardware at various levels of abstraction. Moreover, the intend was to make VHDL the
standard HDL in all DoD design projects and use the language as a means of

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Hardware Description - Mehran M. Massoumi

©Encyclopedia of Life Support Systems (EOLSS)

communication between various teams or departments. Even though none of the
existing HDLs met the requirements of the VHSIC program, the features and
shortcomings of the following eight HDLs were studied before designing the new
language: AHPL, CDL, CONLAN, IDL, ISPS, TEGAS, TI-HDL, and Zeus. In
December of 1987 VHDL was adopted by the IEEE [IEE88, IEE94] as a standard
description language for modeling digital circuits and systems. The emergence of such
industry standard marked the beginning of widespread adoption of HDLs by the design
community.

Parallel with VHDL efforts, the Verilog HDL originated in 1983 at the Gateway Design
Automation and was introduced into the market in 1985. Verilog was designed to
address the requirements of circuit designers and at the same time to be intuitive and as
simple as possible. As a result, the language has fewer constructs than VHDL, its
semantics is not as complex, and development of Verilog-based tools are more readily
realizable. Verilog became an IEEE standard [IEE96] in 1995.

Today, both Verilog and VHDL are used extensively, and perhaps exclusively, by
circuit designers everywhere. Many simulation and synthesis tools have been developed
and marketed that automate the analysis and realization of these HDL models.

3. Levels of Abstraction

Levels of abstraction in a hardware description refers to the amount of design decisions
that have been specified in the description of the circuit; The fewer the design decisions,
the higher the abstraction level. Three distinct levels of abstraction have been
recognized in hardware descriptions: Gate Level (or structural), Register Transfer Level
(also known as, RTL or dataflow), and Behavioral Level.

The lowest and most detailed level of abstraction is the gate level where specific gates
and components and their interconnections are specified in the description. A gate level
model is very specific in terms of the design architecture and what gates are to be used
for the final implementation. The corresponding function of the hardware is not evident
from such descriptions unless the function of each constituent component is known.
One can think of a gate level description as a textual representation of the circuit
schematic.

Register transfer, or dataflow, models are more abstract and describe a controlled flow
of data between buses and registers in the design. Unlike the gate level models, no
specific components are specified in dataflow models since that decision is abstracted
out in the interest of efficiency, simplicity, and better design management. Even though
the mapping between a dataflow description and a hardware architecture is one to many,
the hardware correspondence of each statement is well defined. Furthermore, certain
architectural decisions, such as the scheduling of data transfers in relation to the system
clocks, are specified in the dataflow models.

The behavioral level is the most abstract level and is used to describe the function of the
design without providing any implementation details. Furthermore, hardware
correspondence is not well defined and in most cases is not evident from the model

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Hardware Description - Mehran M. Massoumi

©Encyclopedia of Life Support Systems (EOLSS)

description. Behavioral models present an input to output mapping according to the data
sheet specification and can serve as a concise documentation medium. Compared to gate
level and dataflow counterparts, behavioral models often require less effort to develop
and are useful for simulation and functional analysis during early stages of the design.

The motivation for recognizing various levels of design abstraction is to provide ways
to manage and analyze any given design at all stages of the design cycle. Top-down
design methodologies often start by first contriving more abstract models and then
proceed to more detailed descriptions. Bottom-up design approaches often start by
evaluating existing models and composing them hierarchically with new models in
order to achieve the desired functionality.

In this writing, the initial focus will be dataflow and gate level models. Since these
levels have closer hardware correspondence, it will be a more natural transition for
readers with logic design background. A treatment of behavioral descriptions will
appear in later sections.

4. Fundamental Characteristics of a Description Language

A general hardware description language should support all levels of abstraction and a
number of other characteristics listed below:

 Computations in hardware occur in parallel and this implies that an HDL should
support concurrency or description of parallel actions. Additionally, procedural
constructs should be supported in order to facilitate description of hardware
algorithms that occur within a specific time unit. These procedural constructs are
similar to software languages and improve readability.

 Carriers and operators are an integral part of any HDL. A carrier is either a wire
or memory, depending on the latency of information stored in them. Operators
take their operands from carriers, perform their function, and return the
computed outputs onto carriers.

 HDLs should support a variety of data types that a carrier can assume. However,
the most elementary type is the binary digit or bit. Aggregate types are formed
by hierarchically grouping bits into vectors and arrays. Often times operators are
applied to arrays or vectors of bits and therefore any viable HDL should provide
support for such types and operations.

 Partitioning a large design based on functional coherency, and connecting these
partitions hierarchically is common practice among designers. Such approach
improves design management and allows design reuse. Therefore, HDLs should
support component instantiations and hierarchical configuration of designs.
Moreover, parameterization of modules in the context of hierarchical design
allows description of generic modules which can be customized when
instantiated.

 Another commonly desired feature is the ability to express the dichotomy
between data and control. Since different optimization techniques are applied to
data and control sections, such separation provides the needed design control.

 Hardware independence is a notable characteristic of any HDL. The language
notations should be independent of any specific circuit technology.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Hardware Description - Mehran M. Massoumi

©Encyclopedia of Life Support Systems (EOLSS)

5. Hardware Description and Concurrency

All hardware elements or gates in a logic circuit operate in parallel. Each element
responds to changes or events on its immediate inputs and updates its outputs which
could in turn cause events on the inputs of other elements, depending on the circuit
connectivity. This may start a chain of switching activity in the entire circuit until all
events have been propagated and a steady state is reached. To illustrate this point, let us
compose a dataflow Verilog description of a single full adder.

A general template for describing a hardware unit in Verilog. A module description
begins with the keyword module and is followed by the list of input/ output ports,
declarations, specification of behavior, and the keyword endmodule.

The ports of a module represent the set of carriers that allow the module to
communicate with the outside world. A port can be an input, output, or bi-directional
inout. The declarations of a module specify the type of each carrier as well as whether
the carrier is a port or a signal used for intermediate computations. The remaining part is
the specification of the behavior where a mapping between the inputs and outputs is
described. What follows is a Verilog description of a full adder. All keywords are
shown in bold letters.

module full_adder(a, b, carry_in, carry_out, sum);
input a, b, carry_in;
output carry_out, sum;
wire carry_out, sum, temp;
assign temp = a ^ b;
assign sum = temp ^ carry_in;
assign carry_out = (temp & carry_in) | (a & b);
endmodule

Any carrier that has a driver within the body of a Verilog module must be declared as a
wire, wor, wand, reg, or a number of other carrier kinds, discussed later. In the
full_adder model, both carry_out and sum are single-bit output ports and are also
declared as wire. Moreover, the intermediate signal temp which is not a port is declared
as a wire. As the name implies, a wire is simply a carrier that is continuously driven and
has no memory. In Verilog, a wire is of data type bit and can take four possible values 0,
1, X, and Z. The X value is used for modeling unknown or logic don’t care and the Z
value is used for three state modeling. Both X and Z will be discussed later and for this
example the focus is on the binary values 0 and 1.

The operators used in the full_adder description are xor (i.e., ^), bit-wise and (i.e., &),
and bit-wise OR (i.e., |). The body of the module consists of three continuous
assignments describing the full adder function. All three assignments are concurrent and
therefore the order in which they are written does not affect the behavior. Prior to
delving into order of evaluation of concurrent statements, it is helpful to look at how
time is modeled in terms of simulating a description.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Hardware Description - Mehran M. Massoumi

©Encyclopedia of Life Support Systems (EOLSS)

-
-
-

TO ACCESS ALL THE 16 PAGES OF THIS CHAPTER,
Visit: http://www.eolss.net/Eolss-sampleAllChapter.aspx

Bibliography

M. R. Barbacci, "A Comparison of Register Transfer Languages for Describing Computers and Digital
Systems", IEEE Transactions on Computers, Vol. C-24, No. 2, January 1975.

M. R. Barbacci, "Instruction Set Processor Specifications (ISPS): The notation and its applications", IEEE
Transactions on Computers, Vol. C-30, No. 1, January 1981.

J. R Duley, D. L. Dietmeyer, "A Digital System Design Language (DDL)", IEEE Transactions on
Computers, Vol. C-17, pp 850-861, September 1969.

F. J. Hill, "Introducing AHPL", IEEE Computer, 1974.

F. J. Hill, G. R. Peterson, "Digital Systems, Hardware Organization and Design ", 3rd Edition, John Wiley
& Sons, 1987.

IEEE Inc., "IEEE Standard VHDL Language Reference Manual", IEEE Std 1076-1987, IEEE 1988.

IEEE Inc., "IEEE Standard VHDL Language Reference Manual", ANSI/IEEE Std 1076-1993, IEEE
1994.

IEEE Inc., "IEEE Standard Hardware Description Language Based on the Verilog Hardware Description
Language", IEEE Std 1364-1995, ANSI/IEEE 1996.

K. E. Iversosn, "A Programming Language", Wiley, New York, 1962.

K. J. Lieberherr, S. E. Knudsen, "Zeus: A Hardware Description Language for VLSI", Proceedings of the
20th ACM/IEEE Design Automation Conference, 1983.

Z. Navabi, "VHDL: Analysis and Modeling of Digital Systems", 2nd Edition, McGraw- Hill Publishing,
New York, 1998.

Z. Navabi, "Verilog Digital System Design," McGraw-Hill Publishing, New York, 1999.

D. E. Thomas, and P. R. Moorby, " The Verilog Hardware Description Language," 3rd Edition, Kluwer
Academic Publishers, Norwell, MA, 1996.

https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-45-02-11

