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Summary 
 
The parameters in a system dynamics model are normally estimated one at a time based 
on all the information sources available.   Some parameters will be highly uncertain, 
and supporting information may only be available from informal sources such as 
personal intuition. It is often useful to include the highly uncertain parameters despite 
the difficulties in their estimation.  This is especially true if the parameters are needed to 
close a key feedback loop in the system. Most practitioners make their best estimates 
and proceed with simulating the model.  The model is then tested to learn if changes in 
the parameters lead to important changes in the simulation results. Conducting and 
interpreting these tests is called sensitivity analysis.   
 
This article describes sensitivity analysis as it is commonly performed in the course of 
building and testing a model. The article then turns to more formal methods of 
sensitivity analysis when a model has gained initial acceptance.  The article describes a 
statistical approach that is useful when studying the combined uncertainties of dozens, 
even hundreds of uncertain parameters. Sensitivity analysis is facilitated by recent 
advances in software, and this article illustrates with a Vensim model of the deer 
population on the Kaibab Plateau. The article concludes with pragmatic advice to make 
formal sensitivity analysis a routine part of the modeling process. 
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1. Building Models with Uncertain Inputs 
 
System dynamics modeling is an iterative, trial-and-error process.  A model is usually 
built up in steps of increasing complexity until it is capable of replicating the 
problematical behavior of the system. Some models may be small, with less than a 
dozen parameters.  Other models may contain hundreds, even thousands of parameters.  
Some parameters may be known with perfect accuracy, as with conversion factors or 
physical constants.  Some parameters may be known to within 10%, but others may be 
highly uncertain, with ranges of uncertainty at plus or minus 100%.  
 
Analysts may be reluctant to include highly uncertain parameters in a model because of 
a fear that their inclusion detracts from the credibility of the model.  Most analysts have 
heard the disparaging phrase  “garbage in, garbage out,” and some might fear that 
including highly uncertain inputs leaves the modeling study vulnerable to criticism.  An 
experienced system dynamics modeler knows that parameters should not be excluded 
just because they are uncertain.  The more useful approach is to acknowledge the 
uncertainty and use computer simulation to learn the importance of the uncertain 
parameters.  Rather than “garbage in, garbage out,” the serious analyst would speak of 
“uncertainty in, uncertainty out.” The analysis of how uncertainty in model inputs 
translates into uncertainty in the key outputs is called sensitivity analysis.   
 
Sensitivity analysis is usually conducted after the model has been found to replicate the 
problematical behavior of the system.  The examples below illustrate this practice for 
the model of the deer population on the Kaibab Plateau (explained in a separate article, 
number 003388).   Figure 1 shows the simulation results of a model to explain the rapid 
growth and subsequent collapse of the deer population after predators were 
exterminated. The simulation begins with a population of  4,000  deer, whose numbers 
are held in check by the 50 predators on the plateau.  The predators are reduced to zero 
during the interval from 1910 to 1920, and the model responds with an irruption in the 
deer population.  The population peaks at around 120,000 shortly after the year 1920 
and declines rapidly due to insufficient forage.   
 

 
 

Figure 1.  Simulated overshoot and collapse of the Kaibab deer herd. 
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Figure 2 tests the sensitivity of the overshoot pattern to changes in the estimate of the 
annual forage required per deer per year.  The best estimate is 1 metric ton (MT) per 
deer.  This is an approximate estimate based on one expert’s observation that a deer 
consumes around 23 % of the dry matter that would be consumed by a typical cow. 
Figure 2 illustrates a sensitivity test if it is believed that the forage requirement is 
known to plus or minus 25%.  This graph compares the simulated deer population in 
three simulations of the model. The previous result is shown in the middle --- the deer 
population climbs rapidly reaching around 120,000 shortly after the year 1920.  If the 
annual forage requirement is 0.75 MT per deer, the deer herd would attain a much 
higher population at the peak of the irruption.  Figure 2 shows the peak population at  
around 160,000 instead of 120,000.  On the other hand, if the annual forage requirement 
is 1.25 MT per deer, the population would reach a peak of only around 80,000.   
 

 
 

Figure 2.  Sensitivity of the simulated deer population 
to changes in the forage  requirement.  

 
2. Robust Results 
 
The numeric results in Figure 2 are certainly sensitive to the estimate of the annual 
forage requirement.  If the goal were to predict the deer population at the peak of the 
irruption, a 25% variation in the forage requirement changes the peak estimate by 
almost 100%.  One could conclude that the peak population could range from 80,000 to 
160,000 so further work on the modeling must stop while analysts go to work to pin 
down the estimate of the forage requirement.  This approach would make sense if the 
goal were to predict the peak population. 
 
But system dynamics models are constructed to understand general patterns of behavior, 
not to make point predictions.  In the deer example, the goal is to understand how the 
deer population could undergo explosive growth, followed by a collapse.  The focus 
should be on the general pattern of behavior, not the precise number of deer in a 
particular year of the simulation.  
 
When one studies the Figure 2 with the general pattern in mind, the interpretation is 
much different than before.  For example, all three simulations show the same behavior 
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during the first decade --- the deer population is held in check at 4,000 by the action of 
the predators.  All three simulations show a rapid growth in the population, reaching a 
peak in less than ten years.  All three simulations show the same result when the peak is 
reached --- the deer are too numerous to be supported by the biomass on the plateau, 
and the population declines rapidly.  This sensitivity test has revealed that the model is 
robust.  That is, the general pattern of behavior is not altered by changes in the estimates 
of this parameter. 
 
Robust results are considered desirable because the analyst can proceed with the 
knowledge that the general pattern of behavior arises from the cause and effect 
interactions inside the model.  Robust results are expected by system dynamics 
practitioners because they have come to expect that the pattern of behavior will arise 
from the internal structure of the system, not the precise estimate of a particular 
parameter.  For example, they may expect to see exponential growth when the system is 
dominated by strong, positive feedback.  Or they may expect exponential approach to 
equilibrium when the system is dominated by strong, negative feedback.   The actions of 
the feedback loop, not the precise values of the parameters create the dynamic patterns. 
 
3. The Structure Causes the Behavior 
 
The expectation that system dynamics models will appear robust in the sensitivity 
analysis testing is sometimes expressed by the phrase “the structure causes the 
behavior.”  This phrase finds common usage in the system dynamics literature because 
model builders and model users have accumulated their experiences with different 
models.  If their models were well structured, they tended to show robust results during 
sensitivity testing.   
 
To appreciate why this happens, consider a model to simulate the temperature inside a 
house. The model will simulate a period of 60-120 minutes to help one learn the pattern 
of temperature change after the owner returns home from vacation.  It’s a cold day, and 
the indoor temperature and the thermostat setting are 60 degrees at the start of the 
simulation.  The owner enters the house and uses the thermostat to set the target 
temperature to 70 degrees.  The furnace will come on more frequently pumping heat 
into the house and increasing the temperature toward the target.  A system dynamics 
model might include a wide variety of highly uncertain parameters (i.e, heat loss 
coefficients for the walls, floors, ceilings and windows). If the model is well structured, 
it will include the negative feedback loop that acts through the measured temperature to 
control the action of the furnace.  Such a model will show the same general pattern of 
behavior in sensitivity tests with changes in the uncertain inputs.  That is, the indoor 
temperature will climb from 60 degrees toward the 70 degrees in almost a linear 
fashion. Once the temperature reaches 70 degrees, it will remain close to the target with 
perhaps some small oscillations if there is a lag in the thermostat mechanism.  
 
4. Poorly Structured Models 
 
It’s useful to anticipate what might happen if a model is not well structured.  In the case 
of the temperature model, suppose the model builder forgets to close the loop between 
the measured temperature and the operation of the furnace.  For example, suppose the 
heat production is set at 50% of the furnace capacity because the model builder has 
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observed that the furnace normally operates half the time.  Sensitivity testing of this 
model would reveal that the dynamic patterns would change every time a parameter 
estimate is changed.  With one value of a heat loss coefficient, the model might show 
linear growth in the temperature.  If the coefficient were changed to permit greater heat 
loss, the model might show that the temperature remains constant.  And if the 
coefficient were changed further, the model might show a linear decline in the 
temperature.  At this point, one might conclude that more time is needed to pin down 
the estimate of the heat loss coefficient.  The system dynamics practitioner draws a 
different conclusion form these tests.  The problem with these results is not the estimate 
of the heat loss coefficient; it’s the failure of the model to close the key negative 
feedback loop in the system.  
 
5. Leverage Points 
 
As a general rule, the parameters in a system dynamics model do not prove to be critical 
to the general pattern of behavior.  But important exceptions to this rule appear from 
time to time.  When one discovers that an individual parameter makes a lot of 
difference, one may have found a  “leverage point” in the system. A lever converts 
small movement at one end of the lever into big movement at the other end.  A leverage 
point in a model means that a small change in one parameter can lead to large changes 
in the overall pattern of behavior.   Leverage points are like gold nuggets; modelers 
keep their eyes open hoping to find one during the sensitivity analysis.  When an 
important parameter is found, the modeler knows that further work on the parameter 
estimate is truly important.  And if the parameter can be shaped by policy, the modeler 
may have discovered a key factor that could be changed to improve the general pattern 
of behavior.  
 
An example of a leverage point is the shape of the predation function used in the model 
of the population of deer and predators on the Kaibab Plateau (see article 003388).  In 
the initial simulations, the model showed growing oscillations that would lead the 
predators to annihilate their prey after only a few decades.  This pattern tends to persist 
despite many changes in the model’s parameters.  But there is one key parameter that 
makes a big difference.  It’s the values of the predation function at low density of prey.  
When this parameter is changed (to allow prey refuge from their predators), the pattern 
of simulated behavior is changed from unstable oscillations to stable oscillations. In this 
case, the discovery of this leverage point provides important insight for wildlife 
management. It points to the importance of refuge if the predator and prey populations 
are to coexist over time.   
 
- 
- 
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