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Summary 
 
Practically all system dynamicists build simulation models using differential equations. 
The numerical solution of these equations on digital computers requires some sort of 
approximation such as offered by the methods of Euler or Runge-Kutta. The most 
sophisticated methods even allow the user to specify an error that should not be 
exceeded. Unfortunately, these methods can exhibit instability when they are used to 
approximate systems with both large and small time constants (stiff systems). Excellent 
software incorporating both of these methods exists to greatly simplify the construction 
of system dynamics (SD) models and to build easy-to-use interfaces, so that individuals 
unfamiliar with the model, and perhaps unfamiliar with SD, can carry out simulations of 
their own design. 
 
1. Design Considerations 
 
At the heart of the SD methodology is the construction and exercise of computer based 
models. (See System Dynamics: Systemic Feedback Modeling for Policy Analysis.) We 
build models: 
 

•  to implement our mental model in a precise form, 
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•  to discover whether our mental model is complete, 
•  to communicate our model to others in an unambiguous way, thus permitting 

others to understand and participate in the construction of our model, 
•  to test whether this model is sufficient to reproduce the real world behavior 

we expect (the reference mode), and 
•  to build a vehicle to test ways of reducing the problem without the risk, 

elapsed time, and great expense that would be necessary to test these ideas in 
the real world. 

 
There are three techniques for constructing such models: 
 

•  discrete-event models that reflect the world at the micro level of individual 
items and events, which typically are built using tools such as GPSS, 
Modsim, Promodel Simscript, Simula, SLAM, SIMAN, or Taylor; 

•  discrete-time difference equation models that relate the situation at one 
instant of time to an earlier one through subscripted variables (e.g. Xi, Yi-1 ); 
or 

•  continuous, differential equation models (actually integral equation models) 
that are based on calculus. 

 
We choose to abstract the real world into a set of differential equations because we are 
interested in the big picture. Discrete-event models invite a focus on detail, for example, 
the selection of a probability distribution to be used for a particular process. If the 
problem is at a very detailed level, these models are appropriate. But if the problem is at 
a larger level—a company interacting with its market, or a country addressing economic 
or environmental issues—a differential equation model is easier to develop and use. 
Most models have one or more intangible variables such as quality or reputation that 
cannot be measured precisely, but must be included if the model is to be realistic. 
Including these variables as real numbers in a set of differential equations is the easier 
way to proceed. Difference equations can also be used to build macro-level “big 
picture” models, but impose the restriction of requiring an early commitment to a 
discrete time step that may prove to be a poor choice as the model develops. 
 
All digital differential equation solvers or simulators ultimately use difference equations 
to approximate integration. The first SD simulation language, Dynamo, explicitly 
displayed the difference equations it was using, because many early users of SD were 
not familiar with calculus and the difference equations were simple and nonthreatening. 
Unfortunately, this led some users to think in difference equation terms in all their 
generality, rather than the very restricted subset associated with Euler integration 
(described below). 
 
A number of software tools exist to simplify the construction of difference equation 
models. General purpose languages such as those used in Excel and other spreadsheets, 
Basic, C, and Fortran can build the difference equations that approximate the 
differential equations, but leave much work for the builder to complete the task. Special 
purpose languages such as Powersim®, Stella®/ithink®, and Vensim® allow (or 
require) the model builder to diagram the model as (s)he enters the equations. (Stella 
and ithink are practically identical languages but are marketed to different audiences.) 
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They order the equations for proper computation of results, and provide easy to use 
methods to plot and tabulate these results. Dynamo, the first special-purpose language 
for SD, does not offer a diagramming facility, but does include all the other features of 
the graphical languages. These graphical languages enforce consistency between the 
equations and the diagram, which is an important plus. But medium-sized models can 
lead to very large, incomprehensible diagrams (sometimes referred to as spaghetti 
diagrams), and large models may be nearly impossible to diagram. Some languages 
offer means to reduce this problem, but none totally solve the problem for large models 
(over 1000 equations and constants). 
 
One method for reducing complexity is to use arrays when there are several very similar 
structures, such as the manufacture of several products, or grouping persons or objects 
into age classes. While diagramming similar structures is fairly easy to understand, 
diagramming an aging chain expressed as an array does not give good insight into the 
true structure. 
 
Another method used to simplify model construction is to use macros to repeat structure. 
Macros look like functions (have the same syntax as functions), but rather than 
involving specific machine language unique to themselves, as do the SIN and COS 
functions, they use the normal code generation facilities of the compiler. For example, 
all the languages offer a third-order delay that requires three levels and rates. But by 
using a macro, one only needs to specify the input and the delay to completely specify 
(and diagram) the delay. (Not all languages allow the user to design his/her own macros.) 
 
2. Major Numerical Methods 
 
All the continuous simulation languages solve or simulate a set of simultaneous integral 
equations (also called ordinary differential equations: functions of a single variable––
generally time—in contrast to partial differential equations, which typically are 
functions of space and time) by approximating the integration process with a set of 
difference equations. (Time is broken into finite steps rather than being truly 
continuous.) 
 
2.1. Rectangular (Euler) Integration Method 
 
Most system dynamicists use the rectangular (Euler) integration method, which is the 
default in all the SD simulation languages. In the Euler method, flows into and out of all 
the levels (stocks) are computed for the beginning of the interval and then assumed 
constant for the balance of the interval. Recalling that integration is computing the area 
under a curve (variable versus time), we approximate that area by a series of rectangles 
whose height is the value of the curve at the beginning of the time step, and width is the 
time step (referred to as DT for delta time). 
 
As a very simple example let us integrate TIME squared: 

4 2
2

X TIME dt= ∫  

Or 
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X = INTEGRAL(TIME^2) 
 
We will use a time step of one unit of TIME. Starting at TIME = 2, the integrand (thing 
being integrated) is 4. Multiplying that by the step size (1.0) we get 4.0. At TIME = 3 
we repeat the process and get 9.0. (See Table 1 and Figure 1.) 
 

TIME TIME2 Integral

2 4 4 

3 9 9 

Total =  13 

 
Table 1. DT = 1 

 

 
 

Figure 1. Simple integration (error shown in red) 
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This is simultaneously very simple and very crude. Obviously, reducing the size of the 
time step will reduce the error. We will return to error considerations later. 
 
- 
- 
- 
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