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Summary 

 

For more than 50 years there have been intensive efforts to produce secondary 

metabolites, under sustainable and controlled conditions, for the pharmaceutical, food 

and cosmetic industries. This has resulted in the establishment of high productivity plant 

cell and tissue cultures, and the development of suitable in vitro production processes, 

in which undifferentiated plant cell suspension cultures predominate, despite possible 

somaclonal variations. In only a few cases are root cultures, which are more difficult to 

grow, used.  

 

Meanwhile, commercially manufactured niche products include successful secondary 

metabolites such as Paclitaxel from Phyton (important for cancer therapies), mountain 

Ginsenosides from CBN Biotech (of interest for numerous diverse applications) or the 

PhytoCellTec compounds (PhytoCellTec Alp Rose, PhytoCellTEcArgan, 

PhytoCellTecMalusDomestica, PhytoCellTec Solar Vitis) from Mibelle Biochemistry 

(used in the manufacture of anti-aging products). The first pharmaceutical plant cell-

derived proteins, such as Dow AgroSciences’ Hemagglutinin-Neurominid protein from 

the Newcastle disease virus and Protalix’sTaliglucerase α, have already been approved. 

 

To date, plant cell and tissue culture cultivations have been realized in bioreactors with 

capacities of up to 75m
3
. The majority of the bioreactors that have been used are 

mechanically and pneumatically driven liquid-phase systems, or hydraulically driven 
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gas-phase systems, with cultivation containers that are either reusable or intended for 

single-use only.  

 

Stirred bioreactors with bubble column modifications predominate among reusable 

systems, whereas wave-mixed bioreactors with bubble columns are the most often used 

single-use systems.  

 

Based on typical plant cell and tissue culture characteristics, the most important 

demands on plant cell bioreactors, their operating mode and necessary instrumentation 

are delineated. Furthermore, a categorisation of suitable bioreactors, according to 

continuous phase and power input, is given. In the subsequent bioreactor description, a 

distinction is made between reusable systems for plant cell suspensions and root 

cultures, and single-use bioreactors for plant cell and tissue cultures. In conclusion, 

apparent trends for plant cell bioreactors are discussed. Neither shoots, embryogenic 

cultures or plantlets utilized for micropropagation and plant breeding purposes, or 

bioreactors used for their cultivation are presented in this chapter.  

 

1. General Theoretical Background of Plant Cell and Tissue Cultures and Their 

Processes 

 

The predominance of suspension cultures (among plant cell and tissue culture types 

used in in vitro production processes) can be explained by their less complicated 

morphology and easy scalability. A single plant cell can reach a size of between 100-

500µm in length and 20-50µm in diameter. This means that a plant cell is between 10 

and 100 times larger in size than a bacterial or animal cell. For this reason, plant cells 

double and grow more slowly. In fact, they normally have doubling times of several 

days and cultivation times of several weeks, resulting in high demands on a bioreactor’s 

design and sterility. 

 

Plant suspension cells, being spherical and elongated in shape, seldom grow as single 

cells. They tend to form huge aggregates caused by secretion of extracellular 

polysaccharides from the cell wall, especially in later growth stages. Good cell growth 

(meaning doubling times of five days or less) often results in a strong increase in the 

viscosity of the culture broth, which, as a result, displays non-Newtonian fluid flow 

behavior (e.g. Bingham plastic). This phenomenon has to be taken into account when 

choosing or designing the inoculation, transfer, sampling and harvesting devices used 

for a bioreactor. In order to prevent mass transfer limitations (in terms of nutrients and 

oxygen) in non-Newtonian culture broths within a bioreactor, sufficient power input 

must also be guaranteed. This in turn could lead to high shear forces, resulting from 

agitation and aeration, that act on the cells, potentially causing damage to them. Such 

damage (which can be both reversible and irreversible) is identifiable through 

morphological changes, a shrinking in cell viability, a reduction in product quantity 

and/or quality, and, in the worst case, immediate cell lysis.  

 

Due to the presence of a cellulose cell wall, plant cells are regarded as being more 

robust than their animal counterparts, which only possess a cell membrane. Their shear-

sensitivity is classified as moderate and attributed to their high volume of intracellular 

vacuoles (up to 90 % of the entire cell volume). For instance, it has been demonstrated 
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that plant cells, if they are relatively large in size and contain many vacuoles, have a 

high sensitivity to shear stress. This phenomenon was observed during the late, 

exponential growth and early, stationary growth phases of cells.  

 

Shear-sensitivity of plant cells is also influenced by other culture-specific factors, such 

as plant species, culture age and the rheological properties of the culture broth.  

 

Root cultures are even more sensitive to shear stress than plant suspension cells. 

Changes in root length, thickness, branching, hairiness, and, callus formation at the root 

tips are indicators of root stress. There are two types of root cultures that have proven 

themselves to be effective in in vitro production processes: untransformed roots and 

hairy roots. Hairy roots generated through the transformation of Agrobacterium 

rhiozogenes strains are more stable in geno- and phenotype than untransformed roots 

and plant cell suspension cultures. They grow more quickly than untransformed roots, 

and at a similar rate to suspension cultures. Hairy roots are able to deliver comparable 

amounts of secondary metabolites and proteins as plant cell suspension cultures. 

However, in hairy root cultivations, root tissue integrity should be maintained and non-

uniform, overly dense biomass should be avoided. This can be ensured, inter alia, by 

root immobilization using vertical or horizontal meshes, cages or polyurethane foam 

carriers (also referred to as support matrix or scaffolding for root immobilization) in the 

bioreactor. This does, however, complicate the process of scaling these cultures up (see 

also Section 3.2). 

 

Independent of plant cell and tissue culture type, product formation is either intra- (in 

vacuoles) or extracellular (secretion) and growth- or non-growth associated. The 

product formation mode influences the optimum bioreactor mode (batch, fed batch or 

continuous) and the equipment used. While feeding using culture medium or medium 

constituents (e.g. sucrose) is advantageous in growth associated product formations, 

growth and product formation are decoupled for non-growth associated processes. In the 

latter case, so-called two-phase processes are preferred, which generally rely on a 

growth and a production medium, both of which differ in their composition. In order to 

accomplish medium exchange and cell retention, internally or externally installed 

devices are required for plant cell suspension cultures. Because root tissues have an 

inherent barrier to liquid cell culture mediums, medium exchange in bioreactors using 

hairy root cultivations is clearly technically feasible. Up to now, the temperature shift 

that is performed at the beginning of the production phase for animal cell production 

processes has had no relevance for plant cell and tissue cultures. 
 

Feature Range 

Temperature 23-29°C 

pH
1
 5.0-6.0 

Aeration rate 0.1-0.5vvm 

Light
2
 0-10klux 

1
 Addition of 0.1-0.5% CO2 can stimulate cell growth and product expression, 

2
 Periodic (dark/light 

cycle:8h :16h) or continuous illumination 

 

Table 1. Typical culture conditions for plant cell and tissue cultures 
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Appropriate ranges for temperature, pH, aeration rate, illumination intensity and 

duration (all depicted in Table 1) have to be managed in the bioreactor. Illumination (by 

externally positioned fluorescent lamps, internal illumination systems made with 

fluorescent tubes or glass fibers, or locating the bioreactor in illuminated rooms) is not 

always required. However growth and, in particular, product formation can be promoted 

by the periodical or continuous introduction of light in the case of heterotrophic, 

photomixotrophic, and photoautotrophic cultures. 

 

2. The Plant Cell Bioreactor 

 

2.1 Bioreactor Definition and General Instrumentation 

 

The bioreactor plays a decisive role in process development and optimization. The 

simplest design is a non-instrumented cultivation container (e.g. plate, tube, flask) that 

is operated in an incubator or on a shaker. External equipment is responsible for the 

monitoring and control of essential cultivation parameters such as temperature and 

shaker speed. Such systems are small-scale, and are well known from screening 

experiments (cell line, culture medium).  

 

Larger scale cultivations are carried out in instrumented vessels and bags, and the 

bioreactors possess their own measurement and control units. Typically, this means that 

temperature; agitation speed, aeration rate and dissolved oxygen (DO) are monitored 

and controlled online. Furthermore, plant cell bioreactors have online sensors for foam, 

pressure, filling level, pH and conductivity.  

 

Foam break down is performed almost exclusively by chemical silicon- and 

polypropylene-based agents. They reduce the surface tension of the culture broth, can 

inhibit (particularly at high concentrations) or conversely, even promote cell growth. 

Oxygen transfer in the bioreactor can also be impaired and downstream processing of 

the product complicated by the addition of an antifoam agent. Since plant cells tolerate a 

wide pH range, buffer substances contained in the chemically defined culture medium 

are sufficient to regulate the pH. With only a few exceptions, pH is not regulated by the 

addition of acid (CO2) or base. However, pH monitoring is routinely performed in order 

to detect contamination and to indirectly observe initial ammonium assimilation 

(decrease of pH to a value of approximately 4) and later nitrate assimilation (increase of 

pH to a value of approximately 5). Another indirect method of determining plant cell 

growth is to measure the conductivity in the bioreactor. There is an inverse relationship 

between electrical conductivity and cell weight for different plant cell and tissue 

cultures that express intracellular products. A linear increase in dry weight correlates to 

a decrease in medium conductivity. Finally, despite the low respiration rate of plant 

cells, implementation of gas analytic systems for process monitoring is possible, but 

seldom used. 

 

2.2 Plant Cell Bioreactor Categories 

 

Numerous bioreactor types, used for the successful mass propagation of plant cell and 

tissue cultures, and the expression of their products, have been described in the 

literature. These are most commonly categorized according to the continuous phase that 
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exists within the bioreactor and its power input. Static systems (characterized by 

unenforced power input and only used in mL scale) play only a minor role. Dynamic 

bioreactors guaranteeing higher biomass or cell densities and higher product titre 

volumes become more important as bioreactor volume increases. By comparing their 

continuous phases, dynamic plant cell bioreactors can be subdivided into liquid-phase 

bioreactors, gas-phase bioreactors and hybrid bioreactors combining both types, as 

shown in Figure 1.  

 

 
 

Figure 1. Categories of dynamic plant cell bioreactors according to continuous phase 

and power input 

 

In liquid-phase plant cell bioreactors, cells are continuously immersed in the culture 

medium as air is introduced into the bioreactor. Mechanically, pneumatically and 

hydraulically driven plant cell bioreactors belong to this category of bioreactors. The 

largest group consists of those bioreactor systems which have internal or external 
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mechanically driven devices. These include plant cell bioreactors that are stirred, 

operated with a disk that vertically oscillates, rotated, orbitally shaken, or wave-mixed 

as a consequence of horizontal oscillation. 

  

Although stirred bioreactors with a rotating impeller are most often used, their design 

must meet the highest hygiene standards. For example, safe dynamic sealing between 

the bioreactor’s interior, its shaft and the environment has to be ensured. For this 

purpose, double mechanical seals or (alternatively) magnetic couplings deliver optimal 

performance. Tumbling und vibrating shafts employ static (bellows, metal 

compensators) and not dynamic seals. Pneumatically driven plant cell bioreactors use an 

even simpler design (no moving parts, shaft and seals). In these bioreactors, mass and 

heat transfer are affected by direct gassing of a tall vessel, whereas a compressed air or 

gas mixture is introduced at the bottom of the vessel through a sparger for aeration. 

Mixing and fluid circulation then result from rising bubbles in the culture broth. The 

most prominent examples are bubble columns and airlift bioreactors. The latter of which 

can be regarded as a modified bubble column bioreactor.  

 

The main feature of airlift bioreactors is that the fluid circulates via a closed external or 

internal liquid circulation loop, which permits improved fluid flow and mixing in 

comparison to bubble columns. The circulation loop is created by the mechanical 

separation of an upflow and a downflow gas/liquid channel, which are then connected at 

the top and the bottom of the cultivation vessel. Possible disadvantages of bubble 

column and airlift bioreactors, despite both having more homogeneous energy 

dissipation than stirred bioreactors, are inadequate mixing, foaming, flotation and 

bubble coalescence for plant cell cultivations in which strong variations in biomass 

concentration and viscosity occur. Hence, bubble column and airlift bioreactors without 

additional design modifications are not suitable for highly viscous culture broths and 

high biomass concentrations.  

 

In gas-phase bioreactors solely used for growing root cultures, the roots that are 

immobilized on a matrix, are continuously exposed to humidified air or other gas 

mixtures. The cells are periodically (seldom continuously) subjected to the nutrients 

from the culture medium, which is pumped from a medium storage vessel and delivered 

in the form of droplets which are generated by spray nozzles, compressed gas atomizers 

or ultrasonic transducers.In order to accomplish the optimum spray/mist cycle, it is 

usual for the pump to be coupled to a timer. A distinction can be made between spray or 

trickle-bed and mist bioreactors, all characterized by lower shear stress than the 

previously described liquid-phase bioreactors.  

 

Hybrid plant cell bioreactors are alternately operated with liquid and gas as the 

continuous phase. They were developed for the purpose of sterile transfer and in order 

to homogeneously distribute large amounts of root material at benchtop and pilot scales. 

Distribution of inocula is performed by fluid spreading in the bioreactor. Usually, after 

inoculation the bioreactor is switched from liquid to gas-phase mode, an approach that 

can contribute to a shortening of the cell growth phase. 

 

The plant cell bioreactors presented in Figure 1 are available with non-sterile, 

autoclavable cultivation containers made from either glass, stainless steel or (more 
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rarely) plastic (referred to as reusable or standard bioreactors, or disposable cultivation 

containers). Disposable (single-use) cultivation containers are rigid or flexible and are 

always made of FDA-compliant plastic materials (polypropylene, polysulfone, 

polyethylene, polytetrafluorethylene, ethylene vinyl acetate). It is also worth mentioning 

that with increasing volume, flexible cultivation containers, called bags, require a 

collecting tray or support container, which fix, stabilize and shape the bag. Disposable 

cultivation containers are sterile and ready to use. After the final product harvest, they 

are decontaminated and disposed of. By using single-use plant cell bioreactors, time- 

and cost-intensive cleaning and sterilization procedures become unnecessary.  

 

Furthermore, time for development and production, as well as overall time-to-market 

can be reduced for plant cell and tissue-derived products. The risk of contamination is 

lower, so processes in single-use bioreactors become safer. However, potential cost 

savings are only achievable for high-value products, due to the current high prices for 

single-use cultivation bags equipped with standard or single-use sensors. Interestingly, 

there have been no reports of leachables and extractables secreting from plastic bags 

and inhibiting cell growth for plant cell and tissue cultures. Despite this, reusable plant 

cell bioreactors currently predominate in research and development and commercial 

manufacturing.  

 

- 

- 

- 
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