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Summary 
 
Since the discovery of penicillin in 1929 by Alexander Fleming the importance of 
antibiotics as chemotherapeutic agents has been increasing year after year. More than 
8000 antibiotics are known, although only a few of them have therapeutic importance. 
The study of the biosynthetic pathway of many antibiotics has served as a way to design 
new pathways and products. 
 
Penicillin production can be studied as an example for the antibiotic world because it 
was the first antibiotic produced on a large scale, and also because today it is the one 
most commonly used in the treatment of human infectious diseases around the world. In 
addition, many of the techniques used for the industrial production of penicillin have 
served as a model for the industrial production of other antibiotics or secondary 
metabolites. 
 
Traditionally, the increase in the production of antibiotics has been obtained using 
classical improvement methods which have given good results, and the use of these 
methods has allowed researchers to improve the strains and the production processes. 
However, over the last few years molecular biology techniques have been implemented 
in order to increase final antibiotic production, and also to obtain products that are not 
naturally synthesized. 
 
After approximately 20 years of gene manipulation there is still one open question. Can 
the DNA recombinant technology improve natural evolution or simply make it to go 
faster? Since industry still uses  classical mutation and screening methods to select for 
better producing strains, molecular biology can probably serve as an additional tool to 
improve strains, which must be combined with the classical improvement techniques to 
get the best results. 
 
The article presents an overview about i) the production of penicillin as an historical 
example, ii) the strain improvements techniques used since the discovery of penicillin, 
and iii) examples of the application of DNA-recombinant technology to increase the β-
lactam antibiotic production in filamentous fungi. 
 
1. Introduction 
 
Antibiotics and other secondary metabolites are synthesized in response to physiological 
stress due to nutrient limitation (e.g. in response to limitation of phosphate or easily 
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assimilable carbon and nitrogen sources). Secondary metabolites, accumulated in 
response to nutrient starvation, may serve as biochemical signals that trigger 
differentiation or as microbial antagonists that inhibit the growth of competing 
microorganisms. 
 
The role in nature of antibiotics and other secondary metabolites has been a subject of 
intense discussion for many years. Antibiotics may be antagonistic agents to combat 
bacteria and other microorganisms or effector molecules that trigger physiological or 
morphological differentiation . 
 
Antibiotics are chemical substances produced by microorganisms that kill or inhibit the 
growth of other microorganisms. The development of antibiotics as agents for treatment 
of infectious diseases has probably been more important in the practice of medicine than 
any other single development. 
 
Antibiotics are products of secondary metabolism that can be produced commercially 
by microbial fermentation. Commercially useful antibiotics are produced mainly by 
filamentous fungi and by bacteria of the actinomycete group. As secondary metabolites, 
each antibiotic is produced by a relatively limited number of species and is encoded by 
sets of dispensable genes. These compounds are synthesized at the end of the 
exponential growth phase and during the stationary phase, and their formation is highly 
influenced by the growth conditions, especially by the composition of the culture 
medium. 
 
The most famous example has been the growth inhibition which was observed by 
Alexander Fleming in 1929, when Staphylococcus aureus growth was inhibited by a 
contaminant Penicillium notatum culture. The antibiotic produced by this fungus was 
called penicillin, and was the first antibiotic produced at large scale by submerged 
fermentation procedures. The World War II increase in demand for chemotherapeutic 
substances came at a time when processes to produce penicillin at industrial level were 
being developed. This was also the beginning of the era of antibiotic research and 
industrial production. Even today it is one of the more dynamic fields in biology 
research, and all the industrial countries continue to increase the number of described 
antibiotics: 513 antibiotics were known in 1961, 4076 in 1972, 7650 in 1985, and 
currently around 8000. 
 
Despite the high number of known antibiotics, only a few are produced by fermentation. 
In addition, several other semisynthetic antibiotics are produced from the initial 
microbial product, and finally some of them are produced in a totally synthetic way, e.g. 
chloramphenycol, phosphomycin and pyrrolmitrin. 
 
The significance of antibiotic production for the produced strain still remains unclear. 
Antibiotic production could have ecological significance for the life of such organisms 
in nature: it could confer upon them some advantage over other microorganisms in the 
competition for nutrients and habitat, but solid research to support this hypothesis is 
very limited. As secondary metabolites, antibiotics could play some regulatory role 
during differentiation, perhaps acting as temporary inhibitory agents. At this point it is 
important to remark that most of the new antibiotics have been detected by empirical 
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screening methods, which do not have any similarity with “in vivo” conditions; so it 
could be that the antibiotics being detected “in vitro” are produced in low amounts or 
even not produced at all “in vivo.” 
 
From the industrial point of view, the improvements of the antibiotic producing strains 
have been traditionally carried out by classical procedures, such as the random 
mutagenesis or protoplast fusion. However, since the development of the DNA 
recombinant technology, many approaches have been made to increase the efficiency of 
the antibiotic biosynthetic pathways. The aim is not only to get increases in production 
but also to obtain new final products—and even to manipulate the pathways to direct the 
biosynthetic fluxes in one particular direction (normally to increase the production of 
one particular antibiotic). 
 
2. β -lactam Antibiotics as a Model System 
 

 
 

Figure 1. Classes of ß-lactam antibiotics. 
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β-lactam antibiotics can be divided into five distinct classes (Figure 1). Penicillin was 
discovered by Fleming in 1929. A research group at Oxford under the direction of 
Florey and Chain isolated it from surface cultures of Penicillium notatum in 1940 and 
the first clinical application of penicillin occurred in 1941. 
 
Penicillins and cephalosporins, as β-lactam antibiotics, belong to the most effective of 
all traditional therapeutic agents for the control of infectious diseases. In addition to the 
development of numerous semisynthetic β-lactams, antibiotics with completely new β-
lactam ring systems have been isolated in the past few years using new specific and 
sensitive screening methods. 
 
Penicillins and cephalosporins can be considered as model systems within the antibiotic 
world for several reasons: They were the first antibiotics produced on a large scale in 
submerged fermentations, and in addition, penicillin was the first antibiotic used 
worldwide. They were the antibiotics which instigated the development of fermentation 
technology, and many of the techniques used to produce penicillins have been used as 
the basis for the production of other microbial metabolites, especially antibiotics. 
 
3. Penicillin, Cephalosporin and Cephamycin Biosynthesis: An Overview 
 
The biosynthesis of penicillins, cephalosporins, and cephamycins has been reviewed by 
several authors. A concise overview of the β-lactam biosynthetic pathways is presented 
here. 
 
The penam nucleus of penicillins and the cephem nucleus of both cephamycins and 
cephalosporins are formed by the condensation of three precursor amino acids: L-α-
aminoadipic acid, L-cysteine, and L-valine, by a mechanism designated as “non-
ribosomal peptide synthesis” that involves activation and condensation of the three 
component amino acids and epimerization of the L- to D-valine to form the tripeptide δ- 
(L-α-aminoadipyl)-L-cysteinyl-D-valine (LLD-ACV). 
 
- 
- 
- 
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