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Summary 
 
The increasing cost of crude oil, concerns about energy security and the realization that 
fossil fuels are a finite resource have resulted in renewed focus on biofuels as a 
sustainable fuel resource.  The use of biofuels is also seen to have advantages in 
countering further increases in carbon dioxide emissions.  Bioethanol, and biodiesel are 
already being blended into gasoline and diesel in a number of countries and many 
countries have set targets for increasing the biofuel content of transportation fuels. 
 
Butanol is an important industrial chemical and chemical feedstock but it also has 
potential for use as a biofuel. Currently virtually all butanol is produced chemically 
using either the oxo process from propylene or the aldo process from acetaldehyde.  
Like ethanol, butanol can be produced both by petrochemical and fermentative 
processes. 
 
The production of biobutanol by fermentation for use as a biofuel is generating 
considerable interest as it offers certain advantages in comparison with bioethanol.  
These include higher energy content, lower water adsorption and corrosive properties, 
better blending abilities and the ability to be used in conventional internal combustion 
engines without the need for modification. Biobutanol can be produced from starch or 
sugar based substrates by fermentation utilizing various species of solvent-producing 
anaerobic bacteria belonging the genus Clostridium (see also– Basic Strategies of Cell 
Metabolism). The industrial production of butanol by Clostridium spp. in the Acetone-
Butanol-Ethanol (ABE) fermentation process flourished during the first half of the last 
century and continued into the second half until the availability of cheap crude oil made 
petrochemical synthesis more economically competitive. 
 
Renewed interest in the production of biobutanol from biomass has lead to the re-
examination of the ABE fermentation. Currently a number of companies and scientific 
institutions are investigating the possible revival of the conventional ABE process or 
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the development of new bio-processes. Two major companies recently announced that 
they have committed themselves to the production of biobutanol as a biofuel additive. 
 
The ABE process, however, has a number of limitations which render it uneconomic, at 
present, as compared with the ethanol fermentation. Key problems associated with the 
bio-production of butanol are the cost of the substrate, along with toxic inhibition of the 
fermentation by butanol limiting the yields and concentration of solvent that can be 
produced.  Research involving genetic engineering, metabolic engineering, process 
engineering and alternative methods of solvent extraction and recovery is being 
undertaken to improve the production of biobutanol by fermentation.  Strategies include 
reducing butanol toxicity and manipulation of the fermentation and the cultures to 
achieve better product specificity and yields along with improved substrate utilization. 
 
The most intensively studied solvent-producing species is Clostridium acetobutylicum. 
Its genome has been sequenced and the regulation and genetic manipulation of solvent 
formation is being extensively investigated. Molecular biology has provided a detailed 
understanding of genes and enzymes involved in solvent production and the engineering 
of recombinant strains with superior biobutanol–producing ability is now fast becoming 
a reality.  Advances in continuous culture technology, integrated fermentation 
processes, in situ product removal and improved downstream processing are providing 
new approaches to improving substrate utilization, reducing butanol toxicity, reducing 
process stream volumes and obtaining overall improved bioreactor performance. 
 
The medium to long term future for biofuels is likely to be dependent on the ability to 
ferment lignocellulose substrates. Current technologies for the degradation of plant 
biomass tend to be slow, inefficient and only marginally economic.  Solvent-producing 
Clostridium strains offer a number of advantages in that they can produce a variety of 
hemicellulase and cellulase enzymes naturally, although they are not able to ferment 
crystalline cellulose.  Another plus is that it they able to ferment both hexose and 
pentose sugars whereas industrial yeast is only able to ferment hexose sugars. Certain 
Clostridial strains have a powerful complex of cellulase enzymes known as a 
cellulosome. Genetic engineering research is aimed at transferring this complex to 
butanol producing strains to improve the efficiency of cellulose degradation. 
 
Both the current price of crude oil, and the environmental aspects relating to carbon 
dioxide emissions, could speed up a swing back to fermentation processes using 
renewable plant biomass.  The high price of crude oil had made the biotechnological 
route for butanol production economically competitive once again. Thus the future of 
the industrial processes for the production of butanol by fermentation can be predicted 
to be on the increase. 
 
1.  Introduction 
 
Recently biofuels have become the focus of worldwide interest and discussion.  The 
increasing cost of crude oil, coupled with concerns about energy security, the 
contribution of carbon emissions to global warming and the realization that fossil fuels 
are a finite resource, have resulted in renewed interest in the production of liquid 
biofuels as a sustainable energy source (see also  – Biorefineries).  Bioethanol, 
produced mainly from corn or sugar cane and biodiesel produced from a variety of oil 
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based crops and wastes (such as soya bean, rapeseed, sun flower, palm oil, jatropha, 
lard, used cooking oil etc.) are already being added to gasoline and diesel (see also  – 
Biodiesel), in a number of countries. Many countries have now set targets for increasing 
the biofuel content of fossil-base liquid transportation fuels.  Currently biofuels account 
for around 2% of all liquid transportation fuel consumption.  Some sources are 
predicting that biofuels could account for 20-30% of all liquid fuel consumption by 
2020.  Optimistic estimates indicate that the global market for biofuels could reach 87 
billion gallons by 2020, up from just under 11 billion gallons currently. 
 
Biobutanol produced by fermentation has the potential to provide a new generation 
biofuel that is seen to offer a number of attractive features as a liquid transportation 
fuel.  The reason that butanol has attracted renewed interest is that it offers certain 
advantages compared with ethanol.  Butanol is a four carbon alcohol and it is widely 
used as an industrial solvent and as chemical feedstock precursor for the production of a 
variety of organic chemicals.  
 
These are used in the manufacture of a wide range of products that include paints, 
lacquer finishes, thinners, plastics, butyl rubber, resins, adhesives, elastomers, 
emulsifiers, flocculants, absorbents, brake and hydraulic fluids, dicing fluids and 
cleaning fluids. They are also used in the production a variety of cosmetics, perfumes 
and other personal hygiene products as well as in textiles, leather, printing, paper, 
pesticide and safety glass manufacture. 
 
Most butanol is produced by petro-chemical synthesis from propylene using the oxo 
process or from acetaldehyde using the aldol process.  Currently butanol sells at around 
4.00 $US per gallon and  the United States industrial butanol market is approximately 
350-400 million gallons per year (worth around 1.4 billion $US).   
 
The global market is approximately 1050-1200 million gallons per year. This in itself 
represents a sizable market independent of butanol’s potential as a biofuel. As an 
industrial solvent and chemical feedstock butanol can command a higher price than it 
would if utilized as a biofuel.  
 
Although butanol is currently produced from petrochemicals, during much of the 20th 
century butanol, along with acetone, and ethanol was produced worldwide on a 
commercial scale using  and industrial fermentation process.  The fermentation utilised 
either corn (along with other starch-based raw materials) or molasses (along with other 
sugar-based raw materials) as the substrate employing various anaerobic bacterial 
species belonging to the genus Clostridium.   
 
The classical industrial Acetone Butanol Ethanol (ABE) fermentation process does 
however suffer from a number of limitations, which, make it less economically 
competitive, in comparison with bioethanol.  Currently investigations are being 
undertaken by a number of companies and scientific institutions aimed at re-assessing 
and possibly re-introducing the butanol fermentation process in one form or another. 
 
  A new generation of research employing genetic engineering, metabolic engineering 
and advances in process engineering along with the possible use of cheaper 
fermentation substrates, is being undertaken with the hope of improving the economic 
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viability of biobutanol production by fermentation. 
 

 
 

Figure 1. Fermentation pathways in solvent-producing clostridia. 
 
2.  Biobutanol  as a Biofuel 
 
2.1  Properties of Biobutanol as a Liquid Transportation Fuel 
 
Like ethanol, n-butanol (biobutanol) is an alcohol, with a molecular weight of 74.12 
composed of four carbon atoms and ten hydrogen atoms in comparison with ethanol 
which contains two carbon and six hydrogen atoms.  Butanol has a number of intrinsic 
properties that make it attractive for use as a biofuel. The relevant properties of n-
butanol compared with other liquid fuels are summarised in Table 1. 
Property Gasoline Ethanol Butanol Biodiesel Diesel 
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Reid Vapour Pressure 
kPa  

62 15 2.3 - <3 

Lower Flamibility limit      
Concentration Vol% 1.4 3.3 1.4 - 0.6 
Temperature 0C -45 13 36 - 64 
Upper flamibility Limit      
Concentration Vol% 7.6 19 11.2 - 5.6 
Temperature 0C -20 42 - - 150 
Flash Point  -43 13 36 >120 64 
Autoignition 
Temprature 

300 366 343 - 230 

Cloud Point NA NA -89 0 -26 
Density kg/L 0.791 0.785 0.81 0.86 0.863 
Vapour Specific Gravity 3.5 1.6 2.6 - 5.5 
Kinematic Viscosity 
mm2/sec 

NA NA 3.7 3.5-5 2-8 

Lower Heating Value       
Mass MJ/kg 43.9 27.0 33.22 37.8 42.6 
Volume MJ/L 32.7 21.2 26.9 32.5 36.7 
BTU per Gallon 115,000 110,000 84,000 120,000 13,000 
Research Octane 
Number 

90-100 108 96 NA NA 

Cetane Number NA 2-12 17 >51 40-47.5 
 

Table 1 Properties of n-Butanol (Biobutanol) 
 
2.2  Energy Content  
 
Butanol has an energy content closer to that of gasoline and has 25% more energy 
density per litre than ethanol.  The higher energy content of butanol means that in 
gasoline terms it contains 90% of the BTU per gallon of gasoline in comparison with 
ethanol at 60% BTU per gallon.  Butanol costs more to produce than ethanol, but gives 
a higher performance in engines so cars would get better mileage on butanol.  This 
becomes more important as the amount of biofuel in the fuel blend increases. Its higher 
energy content could provide possible premium biofuel applications by charging more 
at the pump for a superior fuel.  A further energy advantage is that in the production of 
biobutanol, by fermentation, considerable quantities of hydrogen are produced resulting 
in 18% more energy produced from the same amount of fermentable substrate as 
ethanol. 
 
2.3  Octane Rating and Vapour Pressure 
 
Butanol has a similar octane rating to gasoline but not as high as that of ethanol (it 
burns more slowly but is harder to ignite).  One advantage is it does not have the 
toxicity problems of MTBE.  Compared with ethanol, butanol has a lower vapour 
pressure.  The vapour pressure (pounds per square inch at 100 F, Reid VP) is 0.33 for 
butanol, 2.00 for ethanol and 4.50 for gasoline.  The low vapour pressure point coupled 
with a high flash point makes butanol safer to use at high temperatures and it is also 
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generally safer to handle than ethanol. 
 
2.4  Water Tolerance 
 
Butanol has a much lower affinity for water (7.8%) in comparison with ethanol (100%) 
giving it  greater tolerance to moisture and water  contamination.  This makes it less 
corrosive that ethanol and since it is safer than ethanol or gasoline to handle, it can be 
blended directly with gasoline and transported via existing gasoline pipelines. Currently 
ethanol has to be transported separately and mixed at the fuel outlet. 
 
2.5  Compatibility with Existing Internal Combustion Engines 
 
Butanol is well suited to current vehicle and engine technologies. It does not require 
automakers to compromise on performance to meet environmental regulations. Butanol 
uses fuel to air ratios which are closer to that of gasoline than ethanol and butanol does 
not attack the piping of internal combustion engines. One distinct advantage of 
biobutanol over bioethanol is it can be used as a direct one for one replacement for 
gasoline without making any vehicle modifications.. Butanol’s performance as a 
transportation fuel has long been recognized. It was, for example, used to fuel vehicles 
during World War II.  Recently it was used as the fuel it in an unmodified car that was 
driven across the USA.  Ethanol is limited to around a 10% mixture before internal 
combustion engine modifications are required.  To use higher concentrations of ethanol, 
car engines have to be modified to flexi fuel vehicles. Due to its low vapour pressure, 
butanol can be blended into gasoline at higher concentrations than existing biofuels 
without the need to retrofit vehicles or require specially adapted vehicles.  
 
2.6 Co-blending Features 
 
Another feature that makes biobutanol attractive is its ability, to be used as a co-
blending agent with ethanol and gasoline.  Furthermore, butanol ester-based biofuels 
have the potential to be total replacements for gasoline, diesel, and possibly aviation 
and jet fuels.  It is regarded as being environmentally friendly since its combustion, in 
an internal combustion engine, does not yield any toxic compounds such as SOX, NOX 
or carbon monoxide.  Butanol can also be blended directly with diesel fuels. Currently 
biobutanol can be blended up to 10%v/v in European gasoline and 11.5%v/v in US 
gasoline. With butanol there is the potential to greatly increase the maximum allowable 
use in gasoline.  Enhancing the performance of the fuel blends in this way could speed 
up growth of the overall biofuels market along with the agricultural markets that 
support it.  
 
2.7  Handling and Distribution Advantages 
 
Biobutanol can be blended effectively with both gasoline and ethanol.  The structure of 
butanol gives it a tolerance to water contamination so it can be transported in pipelines.  
Ethanol which absorbs water tends to corrode pipelines and must be transported by 
trucks,  trains or barges in relatively small batches to terminals for  blending with 
gasoline. This gives biobutanol certain advantages over ethanol, including the ability to 
be mixed at the oil refinery, making distribution easier, avoiding the need for additional 
large-scale supply infrastructure. Butanol is less susceptible to separation in the 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

BIOTECHNOLOGY – Vol. VI - Biobutanol - D. T. Jones  

©Encyclopedia of Life Support Systems (EOLSS) 

presence of water than existing ethanol-gasoline blends and therefore allows it to use 
the industry’s existing distribution infrastructure without requiring modifications in 
blending facilities, storage tanks or retail station pumps. 
 
2.8 Synergies with Bioethanol and Biodiesel : 
 
Biobutanol has synergies with both bioethanol and biodiesel. It is produced from the 
same agricultural feedstocks as ethanol (corn, wheat, sugar cane, sugar beet, sorghum, 
cassava etc.).  Existing bioethanol plants could be cost-effectively retro-fitted for 
biobutanol production requiring relatively minor changes to fermentation and 
distillation facilities.  There is also a vapour pressure co-blend synergy using biobutanol 
in gasoline containing bioethanol, which facilitates ethanol blending and delivers better 
fuel economy than gasoline ethanol blends alone.  Butanol can also be blended with 
petrodiesel and vegetable oils to facilitate the conversion to biodiesel.  In comparison 
with biodiesel biobutanol has a lower cloud point and can provide more consistent 
quality and potentially better production costs.  In summary, biobutanol offers biomass 
producers and biofuel converters the option of upgrading to a higher value bio-
molecule. It is also compatible with and facilitates the introduction of bioethanol into 
the fuel pool. 
 
2.9  Feedstock Flexibility  and Agricultural Benefits 
 
Feedstock flexibility is seen to be another advantage.  Biobutanol can be produced from 
the same agricultural feedstocks as used for ethanol.  Existing production technologies 
can utilize a variety of conventional sugar-containing crops such as sugar cane and 
sugar beet and starch-containing crops such as corn, wheat, sorghum and cassava, 
supporting its global implementation.  A further advantage of clostridial based butanol 
fermentations compared with yeast-based ethanol fermentations is that clostridia readily 
utilize pentose sugars and plant hydrolysates.  This should ensure that production 
processes would be compatible with future lignocellulosic biofuel feedstocks such as 
fast growing energy crops (e.g. grasses and trees) or agricultural by-products (e.g. corn 
stalks, bagasse). The lignocellulosic technologies being developed within a biorefinery 
concept will have a natural fit with biobutanol. It has also been suggested that the 
expanding biofuels market could be beneficial for global farming as it provides 
additional marketing opportunity for key agricultural products, thus enhancing value to 
farmers. 
 
- 
- 
- 
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