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Summary  
 
Living systems, cells and organisms, are geared toward survival. They are (biologically) 
stable by reproduction. For that purpose they need – above all – energy. Chemotrophic 
organisms win this energy from redox processes, chemo-organotrophs by degradation of 
organics. To survive they are not choosy, that means they catabolize not only bio-
organics, but utilize also chemosynthetic, potentially hazardous compounds. Since 
microorganisms (can) colonize all ecosystems, they represent a self-defence power 
which, however, is too low. Starting from the modes of microbially mediated 
detoxification of organics, i.e. productive and non-productive degradation, the analysis 
of the reasons of the unsatisfactory situation and a physiological evaluation of the 
different organics, well-founded strategies and approaches for overcoming bottlenecks 
have been discussed and experimental examples presented.  
 
1. Introduction 
 
As a result of urbanization and industrialization, atmospheric, terrestrial and aqueous 
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environments, and their associated ecosystems have become more and more polluted, 
and contaminated with a range of substances, both organic and inorganic. A lot of these 
chemicals are problematic since they are potentially toxic, i.e. they can adversely affect 
all kinds of living systems. They become acutely toxic if their concentrations exceed 
certain thresholds and are bio-available. Hence, there are two fundamental approaches 
to decontamination: immobilization and removal, or conversion of the pollutants to 
harmless substances (Figure 1). All methods designed to decrease the (free) 
concentrations of hazardous chemicals use one or the other of these strategies. 
 

 
 

Figure 1: Survey of principles of physical, chemical and biological decontamination of 
ecosystems 

 
Organics can be converted into a variety of other compounds, i.e. transformed and 
derivatized, partially degraded and even mineralized, either chemically or 
biochemically. Biochemical processes can be catalyzed by cell-free systems (via 
extracellular enzymes) or cellular systems (i.e. organisms). Microorganisms play an 
important role in these conversions. They are ubiquitous (MARTINUS BEIJERINCK: 
Everything is everywhere, the environment selects), and in nature, they metabolize bio-
organics to utilize their carbon and energy for growth and multiplication (see also - 
Microbial Cell Culture) as a forward survival strategy. However, this ability is not 
restricted to bio-organics, since microorganisms can also attack and modify xenobiotics 
(see also - Biodegradation of xenobiotics). Furthermore, it appears that microorganisms 
are “teachable” (adaptable) since it is possible to broaden the spectrum of problematic 
compounds they can use as sources of carbon, nitrogen, hydrogen and as electron 
donors. Thus, in a sense, microorganisms have a predetermined capability for 
decontaminating polluted ecosystems (LOUIS PASTEUR: Natura in minimis maxima). 
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They represent the biologically based self-cleaning or defence potential of soil and 
water. This capability is an essential “chapter” of the phenomenon called natural 
attenuation. Interestingly enough, the number of terminal electron acceptors is 
comparatively small. There is neither an indication of, nor a good reason for, 
broadening the range of electron and hydrogen acceptors, for the well-known acceptors 
giving microorganisms great flexibility and versatility (see also - Cell thermodynamic 
and energy metabolism).  
 
2. Key Reactions of Microbially Mediated Degradation of Organics 
 
While fossil raw materials are being chemically processed, waste products enter the 
environment and pollute soil and ground-water. These waste products come from crude 
or mineral oil and contain many substances, especially aliphatic, alicyclic and aromatic 
hydrocarbons. Although these compounds are of biogenic origin and resemble natural 
materials, they are not readily biodegradable. Their microbiologically mediated 
degradation is influenced by various environmental factors and conditions, and their 
inherent biodegradability is determined by the composition, structure and 
thermodynamic stability of the compounds. Degradation of multi-carbon compounds in 
terms of catabolism and assimilation involves cleavage of covalent bonds, which must 
be preceded by an activation step. This may occur via either aerobic or anaerobic 
processes (see also - Microbial physiology in anaerobic and aerobic atmospheres). For 
aerobic activation, O2 is required as an additional external co-substrate. In anaerobic 
activation, the activating agents required are generated internally within the cells 
(organisms): ATP, [2H] (= reducing equivalents, i.e. NADH and/or NADPH), CoASH, 
fumarate, CO2 or H2O act as cosubstrates. If they are not available endogenously, or 
cannot be acquired from the potential substrates themselves, an extra source of these 
agents is needed to provide start assistance. 
 
Alkanes are readily biodegradable under aerobic conditions (see also - Biodegradation 
of xenobiotics, – Basic Strategies of Cell Metabolism). They can be activated terminally 
or sub-terminally. The incorporation of oxygen is catalyzed by a monooxygenase:  
 

2 3 2 2 2 2R-CH -CH O   NAD(P)H  H   R-CH -CH OH  NAD(P)  H O+ ++ + + ⎯⎯→ + +  
 
The resulting primary or secondary alcohols, respectively, are oxidized and are 
eventually converted to fatty acids, which can be converted into the well-known CoA-
esters. Anaerobes are also able to utilize alkanes. In this case,  the activation may take 
place by a carboxylation reaction: 
 

3 2 n 2 3 2 3 2 n 2CH -(CH ) -CH -CH   CO    CH -(CH ) -CH -COOH + ⎯⎯→  
 
The resulting elongated fatty acid can be channelled into the well-known intermediary 
or central metabolism, and assimilated and/or dissimilated (see also - Cell 
thermodynamics and energy metabolism). 
 
The metabolism of alicyclic hydrocarbons has been less thoroughly studied because it is 
difficult to isolate pure cultures that are able to utilize these compounds as sole sources 
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of carbon and energy for growth. Productive degradation of alicyclic chemicals has only 
been reported for syntrophic cultures. Cooxidative reactions appear to be essential for 
the primary attack. Cyclohexane, for instance, is oxidized by a mixed function oxidase. 
The further metabolism of cyclohexanol leads, via several steps, to adipic acid and 
finally via β-oxidation to acetyl-CoA. 
 
In order to utilize aromatic compounds it is necessary to open the ring structure. Ring 
structures are not used as prefabricated building blocks or precursors for growth and 
multiplication in microorganisms or in other living systems at all. Even in plants, the 
various ring structures that comprise the bulk of the structure-forming lignin, the main 
component of wood, are not early metabolites of assimilation. They are synthesized – 
like the so-called secondary metabolites – from chain-like small molecules (see also - 
Secondary products in tissue culture). They may be regarded as metabolic dead end 
products and are responsible for the mechanical stability of higher plants, as 
components of the lignin network that provides their scaffolding matrices. To fulfill this 
function, they must also be biochemically stable. 
 
In contrast to lignin, function-bearing polymers like proteins and nucleic acids are not 
stable per se. They are stabilized and maintained by degradation and steady renewal, i.e. 
turnover. In these cases only their synthesis requires energy. The degradation is 
energetically neutral (or energy-generating). If the internal degradation of these 
polymers (which is a prerequisite for individual development, cell proliferation and 
evolution) is energy-consuming, the functional stability of these polymers, and thus 
homeostasis of the organisms, could only be maintained at great costs.  
 
Ring cleavage must be prepared. Under aerobic conditions in the presence of molecular 
oxygen, aromatic rings are activated by monooxygenase or dioxygenase mechanisms. 
This step is referred to as peripheral, and involves considerable modifications of the ring 
and perhaps elimination of substituent groups. The modifications and conversions of the 
many different compounds result in convergence to a few metabolites (Figure 2). 
Catechol (1,2-dihydroxybenzene) and protocatechuate (3,4-dihydroxybenzoate) are the 
most common primary intermediates into which most of the aromatics are transformed 
(Table 1). Some aromatic compounds are degraded via gentisate (2,5-
dihydroxybenzoate).  
 
In Table 1 the stoichiometries of the formation of these peripheral metabolites are 
summarized. As can be seen, formation is accompanied by an increase in reduction 
equivalents in the case of phenolics, and they are generated expectedly in the case of 
methylated aromatics. Because formation of these metabolites initiates assimilation, the 
first steps influence the overall carbon conversion in productive degradation. Besides 
the primary intermediates already mentioned, further metabolites are formed 
simultaneously from “large” molecules, e.g. from polycyclic aromatic hydrocarbons 
(PAHs).  
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Figure 2: Metabolic funnel in aerobic and anaerobic preparation of aromatics for 
microbial assimilation and growth 
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Peripheral 
Substrate 

O2 [2H] H2O Primary 
Intermediate 

H2O CO2 [2H] Further Metabolites 

        Catechol         

Benzene 1     1         

(Cl-
)Benzoate 

1     1 (chloro)   1     

Toluene 1     1   1 2   

Phenol 1 1   1 1       

DCP 1 1   1 (dichloro) 1       

MCP 1 1   1 (meth-chlor) 1       

Naphthalene 3   1 1   1   Pyr 

Anthracene 6 2 1 1   2   Pyr + Ac + Ft 

Biphenyl   3   1 1 1   2-Oxopentadienoate 

        Gentisate         

Naphthalene 3   1 1       Pyr 

Anthracene 6 2 1 1   1   Pyr + Ac + Ft 

        Protocatechuate         

p-Hydroxy- 1 1   1 1       

benzoate                 

Pyr, pyruvate; Ac, acetate; Ft, formate; DCP 2,4-dichlorophenol; MCP 4-chloro-2-
methylphenol 

 
Table 1: Balances of the aerobic formation of primary intermediates from peripheral 

substrates 
 

The following oxygenolytic fission of the diols may be considered the first step of 
assimilation; the ortho-cleavage leads via cis,cis-muconic acid to succinate + acetyl-
CoA and the meta-cleavage via 2-hydroxymuconic acid semialdehyde to pyruvate + 
acetaldehyde (from catechol; see Figure 3) or to only pyruvate (from protocatechuate). 
Gentisate and homogentisate are split into fumarate + pyruvate and fumarate + 
acetoacetate, respectively. 
 
Anaerobes are also capable of activating aromatic rings. The initial reactions are 
independent of the presence of suitable electron acceptors such as NO3

-, MnO4
+, Fe3+ or 

SO4 
2-. The activation occurs via various mechanisms such as carboxylation of phenolic 

compounds, reductive removal of substituents, O-methyl ether cleavage, 
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transhydroxylation, and addition of fumarate (to methyl groups). The anoxic activations 
also result in just a few primary intermediates (Table 2), i.e. benzoyl-CoA, 
phloroglucinol (1,3,5-trihydroxybenzene) or resorcinol (1,3-dihydroxybenzene) and, 
possibly, some others (Figure 2). After reduction of the activated ring, the dearomatized 
ring is hydrolytically cleaved into a carboxylic acid which is finally converted via β-
oxidation and decarboxylation into acetyl-CoA.  
 

 
 

Figure 3: Model of cleavage of the aromatic ring 
                        
The stoichiometries of the anaerobic formation of these primary intermediates are 
shown in Table 2. The balances show a quite similar picture: claim or gain of reducing 
equivalents. As the reduction equivalents generated do not contribute to the energy 
budget of the cells, (they may even have to be disposed of), the ATP and/or [2H] 
required must be derived from an appropriate substrate. 

 
Peripheral 
Substrate 

ATP CoA [2H] H2O Metab. Primary 
Intermediate 

H2O CO2 [2H] Further 
Metab. 

            Benzoyl-CoA         

Benzoate 2 1       1         

Chloro-
benzoate 

2 1 1     1       HCl 

Phenol 3 1 1     1 2 -1     

p-Cresol 2 1       1     2   

Toluene   1 1   Fum 1       Succ 

Benzyl 
alcohol 

2 1   1   1     2   
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            Phloroglucinol         

Gallate          1   1      

Fum, fumarate; Succ, succinate 
 
Table 2: Balances of the anaerobic formation of primary intermediates from peripheral 

substrates 

 
Anthropogenic, chemically synthesized, man-made organics are very often harmful and 
foreign to living systems. Such chemicals, called xenobiotics, include pesticides, drugs, 
dyes, explosives etc. (see also  - Biodegradation of xenobiotics). Their xenobiotic 
features are based on specific chemical bonds and structures (e.g. -N=N-), groups (e.g. -
NO2, -SO3H) or elements (e.g. -F, -Cl, -Br) that are not involved in the steady turnover 
of biopolymers, or in the life cycle of organisms. Many of these compounds need to be 
reasonably chemically stable to fulfill their intended functions. This need not mean that 
they are biocatalytically inert, but as a rule they appear to be persistent and are not 
readily biodegradable or assimilable.  The biodegradability of substituted chemicals is 
highly influenced by the kind, the number and the arrangement of the substituents: their 
resistance to degradation being increased by the electron-drawing property of the 
substituents. Therefore, an electrophilic attack by oxygenases becomes increasingly 
difficult the more substituents there are, and the greater the electron deficit at the carbon 
skeleton. Three mechanisms for eliminating xenobiotic groups, e.g. chlorine, are 
known: 
 
(i) oxygenolytic, in which oxygen in the OH-group formed comes from O2, for 
example, 

2 22-Chlorobenzoate  [2H]  O    Brenzcatechol  CO   Cl−+ + ⎯⎯→ + +     
 
(ii) hydrogenolytic, i.e. reductive, for example, 
3-Chlorobenzoate  [2H]   Benzoate  HCl+ ⎯⎯→ +                 
 
(iii) hydrolytic, whereby substituents are replaced by hydroxyl groups from water, for 
example, 

24-Chlorobenzoate    H O   4-Hydroxybenzoate   HCl. + ⎯⎯→ +       
 
Depending on the resulting carbon skeletons and similarities to biogenic molecules, the 
products are further metabolized and may even be assimilated (e.g. 2,4-D derivatives), 
or remain intact as so-called dead end products. Many of the xenobiotics are not self-
sufficient, i.e. they are not autarkically degradable. They are indigent, their utilization 
requires an external support. If the cometabolic activation of xenobiotics leads to dead 
end metabolites, a continuing source of such an aid is required. In co-oxidative 
degradation (very often initiated by a mixed function oxidase) and co-reductive 
processes (e.g. hydrogenolytic dehalogenation of trichloroethene, in which hydrogen is 
added to form dichloroethene and HCl), the external aid can be provided by typical 
growth substrates. They operate as cosubstrates. 
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