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Summary  
 
This chapter presents an overview of advanced control strategies for wind turbine 
systems. It starts with important historical evolutions regarding wind energy that lead to 
the introduction of modern wind turbines. Next, the modeling of wind turbines, which is 
essential for the control system design, is presented. Finally, the chapter focuses on a 
wide variety of advanced control system techniques including hard, soft, and fusion 
control tools. In particular, key ideas for control methods are briefly described and 
reviewed.  
 
1. Wind Energy Systems  
 
1.1. Short History of Wind Energy  
 
It is worth giving a brief review of wind energy so that the readers can see the path that 
wind energy has undergone for centuries. Wind was the primary source of energy to 
power sailing ships before the advent of steam engines in the 18th century (Johnson 
(2006),Hansen (2008)). In addition to transportation use, wind turbines often referred to 
as windmills; were also used for agricultural purposes such as pumping water, grinding 
grains, sawing wood, and powering tools (Manwell et al.  (2002)). In the middle of the 
seventh century, Persians began transmitting stories of windmills, but it was not verified 
until the first recorded windmill appeared in the tenth century in Persia (Spera (2009)). 
Windmills at this time were vertical-axis types and so simple that they provided poor 
performance with low efficiency (Johnson (2006)). More sophisticated and efficient 
windmills were designed in Europe. At this time, people witnessed a major 
technological change from vertical-axis to horizontal-axis that significantly increased 
the conversion efficiency. The earliest horizontal-axis windmill was by the English in 
1191 (Johnson (2006), Spera (2009)). After this time, windmills began to thrive and 
become an essential source of power in Europe for centuries. However, when the 
industrial revolution happened in the 18th century, the use of windmills declined, and 
they were rapidly replaced by steam and internal combustion engines.  
 
Wind turbines for electricity generation were invented towards the end of the 19th 
century following the development of electrical generators (Manwell et al. (2002),Spera 
(2009)). Technological achievements of wind turbines, particularly for large-size wind 
turbines, took place in the middle of the 1940s. Nevertheless, much attention was not 
paid to wind energy generation until the oil crisis in the 1970s. Increasing awareness of 
the negative environmental effects of fossil fuel energy, compounded with the strong 
desire to be independent of oil, caused many countries in Europe and America to carry 
out national research programs in alternative energy resources, particularly large wind 
turbines. Consequently, reliable wind turbine prototypes were created. However, 
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technological advances in the wind turbine field were not strong enough to encourage 
larger generation of wind power. The situation was truly changed when governments 
imposed regulations advocating wind energy and offered attractive incentives for wind 
energy producers in the 1970s and 1980s. Additionally, the cost of wind energy has 
continuously dropped, approaching the competitive level of conventional energy. These 
factors enabled a powerful re-emergence of modern wind turbines.  

 

 
 

Figure 1. Two basic types of wind turbines 
 
1.2. Wind Turbine Structures  
 
The two basic types of wind turbines are horizontal-axis wind turbines (HAWT) and 
vertical-axis wind turbines (VAWT). These configurations are shown in Figure 1.  

 

 
 

Figure 2. Basic components of a HAWT (Courtesy of the U.S. Department of Energy: 
http://www1.eere.energy.gov/wind/wind_how.html) 
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1.2.1. Horizontal-Axis Wind Turbine (HAWT) Configuration  
 
A modern HAWT consists of different interacting sub-systems as shown in Figure 2. 
Basically, these sub-systems can be divided into two categories: mechanical sub-
systems and electrical sub-systems.  
 
• Mechanical Sub-systems: The mechanical sub-systems contain 1) the wind 
turbine rotor, 2) the drive train, 3) the nacelle structure, and 4) the tower.  
 
1. The Wind Turbine Rotor: The wind turbine rotor converts kinetic energy from 
wind into mechanical energy. It is made up of blades which are all connected to a 
central hub, then this hub is linked to a turbine shaft. As a result, when wind goes 
through the blades, it causes rotation of the turbine shaft. A one-blade wind rotor 
operates at high speed so it allows the mechanical transmission component to be 
simplified. However, due to its great imbalance and static structure, weight 
compensation for the missing blade must be made. Moreover, the aerodynamic 
efficiency is much lower than that of two or three-blade HAWTs. As a result, the one-
blade HAWTs were technologically successful but not commercially successful (Gipe 
(2009)). In similar manner, a two-blade HAWT provides for a cheaper wind rotor and 
transmission unit and easier installation over a three-blade HAWT. Nevertheless, the 
three-blade HAWT is presently common because of its superior energy efficiency. 
Another important aspect of the wind turbine rotor is the materials used for the blades. 
Blades were traditionally made of wood, steel, or aluminum. However, these materials 
have limitations, so their use has been in decline. Nowadays, almost all wind blades are 
made of a composite material called fiberglass.  

 
2. The Drive Train: The drive train is responsible for transmitting the mechanical 
power from the wind rotor to the electric generator. The drive train consists of a turbine 
shaft or low-speed shaft, a gearbox, and a generator shaft or high-speed shaft. The 
turbine shaft must meet both structural and mechanical requirements because it needs to 
support the rotor weight and provide torsional damping caused by wind gusts on the 
wind rotor. The gearbox is to step up the rotational speed.  
 
3. The Nacelle Structure: The nacelle is a bed plate that supports the drive train and 
the generator. Moreover, in the HAWTs, there is a yaw mechanism that turns the wind 
rotor to face the wind direction.  
 
4. The Tower: The tower is a support for the wind turbine. The most important 
factors in designing a tower are height and strength. The higher the tower, the more the 
captured wind power. However, the height cannot be as high as possible because there 
is a tradeoff between the height and the cost. In addition, the tower must be strong 
enough to withstand wind thrust.  
 
• Electrical Sub-Systems: The electrical sub-systems contain 1) the generator and 2) 

power electronic converter.  
 

1. The Generator: The generator transforms mechanical power into electrical 
power. Essentially, its operating principle is that a coil of wire (rotor) rotating 
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within a magnetic field (stator) will produce an output voltage and current. The 
amount of produced power is a function of the size of the generator and the 
relative movement between the rotor and the stator.  

 
Generators are classified as direct current (DC) or alternating current (AC). The AC 
generators are then characterized into two types: synchronous AC generators and 
asynchronous or induction AC generators. Induction AC generators are widely used 
because they are inexpensive, simple, and capable of attenuating torsional torque. 
Induction generators, however, have more mechanical-electrical conversion losses than 
synchronous generators. Synchronous generators provide more efficiency than 
induction generators, but they require extra voltage controllers and are not able to 
mitigate torsional stresses.  
 

2. The Power Electronic Converter: When the wind speed changes, the wind rotor 
speed changes accordingly, and hence the output voltages and frequency 
fluctuate. In grid-connected wind turbines, this is unacceptable. Thus, the output 
voltages and frequency need to be kept constant. In essence, a power electronic 
converter functions as a stabilizer that helps fix the output voltages and 
frequency under the wind speed changes.  

 

 
 

Figure 3. Two types Of VAWTs 
 
1.2.2. Vertical-Axis Wind Turbine (VAWT) Configuration  
 
There are several types of VAWTs. However, two popular ones are Savonius and 
Darrieus VAWTs as indicated in Figure 3 . Unlike HAWTs, VAWTs do not depend 
upon wind direction. They rotate equally in any wind direction and hence, the yaw drive 
systems are not necessary. This is a big advantage of VAWTs. In addition, the drive 
train and generating sub-systems are placed on the ground, and not necessarily located 



CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Evolution Of Wind Turbine Control Systems - Hoa M. Nguyen, D. 
Subbaram Naidu  

©Encyclopedia of Life Support Systems (EOLSS) 

on high positions that require costly nacelle platforms for support. However, VAWTs 
provide low conversion efficiency. Moreover, VAWTs demand high maintenance and 
particularly, the Darrieus VAWT is not self-starting. These disadvantages consequently 
result in less use of VAWTs.  
 

 
 

Figure 4. Wind turbine subsystem block diagram 
 
2. Wind Turbine Modeling for Control  
 
Wind turbines contain many physically different subsystems; so modeling of wind 
turbines requires a wide range of knowledge to develop suitable models for each 
subsystem. Certainly, designers want to achieve models as accurate as possible by using 
advanced available tools such as computational fluid dynamics or finite element 
analysis. Nevertheless, these tools increase the design time and cost. For the purpose of 
automatic control of wind turbines, the modeling techniques used are simply based on 
fundamental dynamic principles. 
 
Figure 4 (Bianchi et al. (2007)) shows a grid-connected wind turbine block diagram for 
modeling. The mechanical sub-systems include the aerodynamics, the drive train 
dynamics, the structural dynamics, and the pitch system dynamics. The electrical sub-
systems contain the generator dynamics, the power electronic converter dynamics, and 
the grid dynamics. Here, only models of the aerodynamics, the drive train dynamics, the 
structural dynamics, and the generator dynamics are given.  
 
2.1. Wind Turbine Aerodynamics Modeling  
 
Aerodynamics modeling is to describe how a three-dimensional wind field causes forces 
and rotation on wind turbines. Although more expensive computational fluid dynamics 
tools can be employed to build more exact models of aerodynamics, the blade element 
momentum (BEM) theory is commonly accepted as an essential tool to obtain 
aerodynamic models of wind turbines. This theory explains the development of 
aerodynamic forces acting on a radial blade element of infinitesimal length. Figure 5 
(Gipe (2009)) shows a cut plane viewed from the blade tip. This plane describes a blade 
element and developed forces. It is explained that as this blade element moves in the 
wind flow, differential pressure around the blade element causes forces called the lift 
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force and drag force. These two forces, which are dependent on the angle of attack α  or 
the pitch angle β , can be resolved into two other forces called the torque rτ  and thrust 
force Tf . The two forces, rτ  and Tf , are integrated along the blade length, resulting in 
the global torque rT  and thrust force TF  acting on the wind turbine.  

 

 
 

Figure 5. Aerodynamic principle of HAWTs 
 

 
 

Figure 6. Torque coefficient is a function of the tip-speed ratio and pitch angle 
 
It is observed from Figure 4 that the inputs of the aerodynamic model are the wind 
speed V, the pitch angle β , the rotor speed rω , and the total axial speed of the tower 
and blades dV . The outputs are the torque rT  and a thrust force TF . The relationships 
between the inputs and the outputs are given as (Bianchi et al. (2007)) 
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where ρ  is the air density, R  is the radius of wind rotor, r
e
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ratio, β  is the pitch angle, TC  and QC  are the torque coefficient and the power 
coefficient, respectively. These coefficients are the functions of the tip-speed ratio and 
the pitch angle (see Figure 6), and 
 

e dV V V= − , (2) 
 
where dV z rδ= + && , r  is the lumped force distance, and z  and δ  are the axial 
displacement of the tower and the blades caused by the tower bending and blade 
flapping phenomena which are defined in the mechanical modeling section.  
 
2.2. Mechanical Sub-Systems Modeling  
 
Mechanical sub-systems are simpler in modeling than any other subsystems of wind 
turbines (Moriarty and Butterfield (2009)). Multi-body dynamics or finite element 
analysis are advanced options to analyze the dynamics of blades and tower, but they are 
too complicated and expensive for control modeling. Instead, modal representations are 
used. Movements imposed on blades and the tower are modeled in two directions (one 
is perpendicular or axial, and the other is parallel to the rotational plane.)  

 

 
 

Figure 7. Structural dynamics of HAWTs 
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2.2.1. Structural Modeling  
 
Here, the flapping dynamics of blades and the bending dynamics of the tower are 
presented as shown in Figure 7 (Bianchi et al. (2007)). Distributed thrust forces acting 
along each blade are lumped as the force TF  at distance r. This lumped force causes an 
angular displacement δ  of each blade and an axial reflection z of the nacelle. Using the 
Lagrangian theory, a state space model in terms of x = Ax + Bu&  with parameters 
defined as (Bianchi et al. (2007)).  
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where  
N : The number of blades  
r : The lumped force distance  

tm : Total mass of the tower and nacelle  

bm : Mass of each blade  

tK : Stiffness coefficient of the tower  

bK : Stiffness coefficient of each blade  

tB : Damping coefficient of the tower  

bB : Damping coefficient of each blade  
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and the output equation is given as 
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x&&
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Notions Descriptions 
N  The number of blade   
r  The lumped force distance   

tm  Total mass of the tower and nacelle   

bm  Mass of each blade   

tK  Stiffness coefficient of the tower   

bK  Stiffness coefficient of each blade   

tB  Damping coefficient of the tower   

bB  Damping coefficient of each blade   

Table 1. Parameter descriptions for the modeling of the structure of HAWTs 
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2.2.2. Drive Train Modeling  
 
In essence, the drive train system includes the turbine shaft or low-speed shaft, a 
gearbox, and the generator shaft or high-speed shaft. The process of deriving a 
mathematical model of the drive train requires some assumptions. First, the wind rotor 
and generator are considered two masses and the low-speed shaft and high-speed shaft 
are represented by two spring elements. Second, the gearbox is regarded ideal when the 
transmission efficiency is one hundred percent and constant over the operating range. 
Moreover, the impact of internal structures and phenomena such as gear type, gear 
backlash, etc. is ignored.  
 

 
 

Figure 8. Flexible drive train of HAWTs 
 

Notions Descriptions 

rθ  The rotational angle of the wind rotor  

Lθ  The rotational angle of the low-speed shaft  

Hθ  The rotational angle of the high-speed shaft  

gθ  The rotational angle of the generator  

rω  The rotational speed of the wind rotor  

Lω  The rotational speed of the low-speed shaft  

Hω  The rotational speed of the high-speed shaft  

gω  The rotational speed of the generator  

rT  The torque of the wind rotor  

LT  The torque of the low-speed shaft  

HT  The torque of the high-speed shaft  

gT  The torque of the generator  

rJ  The inertia of the wind rotor  

LJ  The inertia of the low-speed shaft  

HJ  The inertia of the high-speed shaft  
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gJ  The inertia of the generator  

rK  The stiffness coefficient of the wind rotor side  

gK  The stiffness coefficient of the generator side  

rB  The damping coefficient of the wind rotor side  

gB  The damping coefficient of the generator side  

i  The gearbox ratio  
η  The transmission efficiency of the gearbox  

 
Table 2. Parameter descriptions for the modeling of the drive train of HAWTs 

 
The drive train system is shown in Figure 8 (Munteanu et al. (2008b)) and model 
parameters are given in Table 2. Similar to the structural modeling described above, the 
Lagrangian theory can be applied to derive the model of the above drive train system 
(Note that coordinates here are angular motions). The state space model in terms of 
x = Ax + Bu&  is obtained as  
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If only angular speeds are of interest, the output equation will be 
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where 
T

r L H gω ω ω ω⎡ ⎤= ⎣ ⎦y . 
 
Note that the above drive train model can be simplified by transforming the gearbox 
mass and inertia into the wind rotor and the generator. The reduced model of the drive 
train becomes  
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The output equation is given as  
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