
UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. II - Controller Design in Time-Domain - Unbehauen H. 

©Encyclopedia of Life Support Systems (EOLSS) 

CONTROLLER DESIGN IN TIME-DOMAIN 
 
Unbehauen H. 
Control Engineering Division, Department of Electrical Engineering and Information 
Sciences, Ruhr University Bochum, Germany 
 
Keywords: Tracking control, Disturbance rejection, Performance specifications, Integral 
criteria, Optimal controller setting, Tuning rules for standard controllers, Empirical 
design, Standard polynomials. 
 
Contents 
 
1. Problem formulation 
2. Time-domain performance specifications 
2.1. Transient Performance 
2.2. Integral Criteria 
2.3. Calculation of the ISE-Performance Index 
3. Optimal controller settings subject to the ISE-criterion 
3.1. Example 
3.2. Optimal Settings for Combinations of nPT -Plants and Standard Controllers of PID 
Type 
4. Empirical procedures 
4.1. Tuning Rules for Standard Controllers 
4.1.1. Ziegler-Nicols Tuning Rules 
4.1.2. Some Other Useful Tuning Rules 
4.2. Empirical Design by Computer Simulation 
5. Mixed time- and frequency-domain design by standard polynomials 
6. Concluding remarks 
Glossary 
Bibliography 
Biographical Sketch 
 
Summary 
 
This article presents an introduction to the classical design methods for linear continuous 
time-invariant single input/single output control systems in the time-domain. The design 
is based on finding the “best” possible controller with respect to selected time-domain 
performance specifications. For the dynamic behavior of the closed-loop control system, 
performance specifications are defined for the input step responses of the reference signal 
and disturbance. These transient performance specifications are natural and are used to 
formulate the desired closed-loop behavior of the control system. However, these 
specifications are more appropriate for evaluating the result of a control system design, 
whereas the design is usually based on minimizing specific integral performance indices 
using various functions of the error between the reference input and the controlled plant 
output. Especially in the case of a fixed controller structure, these integral criteria provide 
optimal controller settings. The solution of this optimization problem can be obtained by 
numerical or analytical approaches. In the time-domain design, empirical procedures, 
such as tuning rules for standard controllers or design by computer simulation play an 
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important role. Time-domain specifications can also be used to select 
standard-polynomials, such as the characteristic polynomial for the desired closed-loop 
transient behavior. This leads to a mixed time- and frequency-domain design, where the 
solution provides the structure and parameters of the controller as a result of the selected 
time-domain performance specification. 
 
1. Problem Formulation 
 
The design of a control system may lead to different solutions to meet explicit design 
goals, but also implicit engineering goals such as economical considerations, complexity 
and reliability. The design procedure depends on whether the nominal plant transfer 
function P ( )G s  is known or not.  
 
In any case, the “best” possible controller or compensator transfer function C ( )G s  has to 
be designed or selected and tuned such that the desired performance specifications are 
met. In general the designed closed-loop system, considered in Figure 1, should at least 
fulfil the following conditions: 
 
1) The closed-loop system has to be stable. 
2) Disturbances ( )d t  should have only a minimal influence on the controlled variable 

( )y t . 
3) The controlled variable ( )y t  must be able to track the reference signal ( )r t  as fast 

and as accurately as possible. 
4) The closed-loop system should not be too sensitive to parameter changes of the plant. 
 
In order to fulfil conditions 2) and 3) the closed-loop transfer function for tracking control 
in the ideal case should be, assuming unity feedback 
 

0
R

0

( )( )( ) 1
( ) 1 ( )

G sY sG s
R s G s

= = =
+

, (1) 

 
where 0 C P( ) ( ) ( )G s G s G s=  is the open-loop transfer function, and the corresponding 
ideal transfer function for the closed-loop in the case of disturbance rejection should be 
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( ) 1( ) 0
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= = =
+

 (2) 

 
Theoretically, Eqs. (1) and (2) can only be satisfied if 0 ( ) 1G s s>> ∀ , which will be the 
case for a large value of the gain factor 0 1K >>  of 0 ( )G s , where 0K  is the gain factor 
of 0 ( )G s . It should be noted that in this article only unity feedback is considered. The 
addition of a feedback controller can enhance stability and design flexibility. 
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Figure 1. Block diagram of a standard linear closed-loop control system 
 
However, both conditions, Eqs. (1) and (2), cannot be satisfied strictly, due to physical 
limitations especially concerning the controller gain and the magnitude of the 
manipulating signal. Furthermore, increasing 0K  too much would lead in most cases to 
stability problems. In practice, the design engineer has to make a compromise between 
the desired behavior and the technical limitations.  
 
This procedure needs a lot of experience, and engineering judgement, as well as intuition. 
Thus, it is understandable that for the design of control systems either in the frequency- or 
time-domain many different approaches are available and provide different solutions. 
Each solution is optimal with respect to the selected measure of performance. In this 
article only some classical design methods in the time-domain are considered. The design 
of state feedback controllers is, therefore, discussed separately (see Design of State Space 
Controllers for SISO Systems). 
 
2. Time-Domain Performance Specifications 
 
The starting point for the design of a feedback-control system is to have a good plant 
model described either in the form of a differential equation or a transfer function P ( )G s . 
Once the plant model is given, the next step is to design an overall system, as shown in 
Figure 1, that meets the desired design specifications.  
 
It is important to note that different applications may require different specifications. 
Generally, the performance of feedback-control systems includes two tasks: steady-state 
performance, which specifies accuracy when all the transients are decayed (see 
Closed-loop Behvior), and transient performance, which specifies the speed of response 
as discussed below. 
 
2.1. Transient Performance 
 
The transient performance is usually defined for a step reference or step disturbance input 
response as shown in Figure 2. The specifications indicated in Figure 2 are natural. In the 
case of reference tracking (see Figure 2a) these specifications are as follows: 
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Figure 2. Step responses for (a) reference input and (b) disturbance input including main 
parameters of transient performance 

 
Peak overshoot maxe :  This term is defined as the maximum value of the response at time 

maxt  in relation to its desired final value. It can be considered to be a measure of the 
relative stability of the system. It increases as the damping ratio decreases. 
 
Rise time aT : Is defined often as the time required for a response to go from 10 % to 90 % 
of its desired final value, or as the time interval given by the intersection points of the 
inflexion tangent with the 0 % and 100 % lines. 
 
Delay time uT : This is the time between the excitation and the intersection point of the 
inflexion tangent of the response with the 0 % line. 
 
Settling time tε : This term is the time after which the response remains within a band of 

%ε± about the desired final value, where ε  is selected between 2 % and 5 %. 
 
Reaching time ant : This is the time at which the response reaches for the first time the 
desired final value, where an u at T T≈ + . 
 
Similarly, the case of disturbance rejection (see Figure 2b) can be characterized by 
introducing the peak overshoot and settling time. Whereas maxe  and tε  depend upon the 
damping ratio, the other values aT , maxt  and ant  represent a measure for the speed of 
the transient behavior. 
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2.2. Integral Criteria 
 

The performance specifications introduced above are appropriate for evaluating the 
results of a control system design, however, they cannot be used directly as a starting 
point for designing a controller. It would be desirable to have criteria based on only one 
factor, for example, 
 

1 an 2 3 maxI k t k t k eε= + + , (3) 
 
where ( 1, 2, 3)ik i =  are weighting factors characterizing the relative importance of 
each of the performance specifications. The design of a controller leading to the smallest 
value of I is called optimal in the sense of this criterion. However, the individual selection 
of the ik -factors and the analytical evaluation of Eq. (3) usually causes difficulties. 
Therefore, performance indices based on various functions [ ( )]kf e t  of the error 
 

( ) ( ) ( )e t y t r t= −  (4) 
between the reference input ( )r t  and the controlled plant output ( )y t  are preferred. 
General performance indices covering an error function in [0, )∞  have been introduced 
as the integral 
 

0
[ ( )] dk kI f e t t

∞
= ∫ , (5) 

 
where [ ( )]kf e t  can take various forms as shown in Table 1. 
 
Having defined various performance indices according to Table 1, the integral criteria 
can be formulated as follows: A closed-loop control system is optimal subject to the 
selected performance index kI  if the adjustable controller settings 1 2, ,r r …  or the 
controller structure are selected such that kI  becomes minimal: 
 

!

1 2
0

[ ( )] d ( , , ) Mink k kI f e t t I r r
∞

= = =∫ … . (6) 

 
Performance Index Characteristics 

1
0

( ) dI e t t
∞

= ∫  
Integral of total error (ITE): Only appropriate for highly damped 
monotonic step responses of ( )e t ; simple mathematical 
treatment. 

2
0

( ) dI e t t
∞

= ∫  Integral of absolute error (IAE): Appropriate for non-monotonic 
step responses. Not easy to track analytically. 
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2
3

0
( ) dI e t t

∞
= ∫  

Integral of square error (ISE): Penalizes large errors more heavily 
than small ones; provides longer tε  as 2I . In many cases 
analytical tracking is possible. 

4
0

( ) dI e t t t
∞

= ∫  
Integral of time multiplied absolute error (ITAE): Provides similar 
results as 2I ; puts less weight on ( )e t  for t small and more for t 
large. 

2
5

0
( ) dI e t t t

∞
= ∫  

Integral of time multiplied square error (ITSE): Provides similar 
results as  combined with the same time weighting as for 4I  

2 2
6

0
[ ( ) ( )] dI e t e t tα

∞
= +∫  

Integral of generalized square error (IGSE): Better results as for 

3I  are obtained, however, the selection of the weighting factor α  
is subjective. 

2 2
7

0
[ ( ) ( )] dI e t u t tβ

∞
= +∫  

Integral of square error and control effort (ISECE): Provides a 
slightly larger maxe , but tε  becomes essentially smaller as for 

; however, the selection of β  is subjective. 

 
Table 1. Various integral performance indices (Note: If the closed-loop systems has a 

steady-state error e∞ , then ( )e t  must be replaced by ( )e t e∞− ) 
The minimum of kI  may be located inside or, due to constraints, on the boundary of the 
parameter space, whose coordinates are defined by the adjustable controller parameters 

( 1, 2, )ir i = … . Both cases lead to different mathematical treatments. In the first case an 
absolute or global optimum of kI  is obtained, whereas in the second case a boundary or 
relative optimum occurs. 
 
2.3. Calculation of the ISE-Performance Index 
 

In many cases, the criterion based on minimal ISE (integral of the squared error) - 
performance index ( 3I  in Table 1) is appropriate. Furthermore, the analytical treatment 
of the most important cases is possible. The calculation of this performance index is based 
on Parseval’s theorem, 
 

j
2

3
0 j

1( ) d ( ) ( )d
2 j

I e t t E s E s s
π

+ ∞∞

− ∞

= = −∫ ∫ , (7) 

 
where ( )E s  is the Laplace transform of ( )e t  and is assumed to be a fractional rational 
function 
 

1
0 1 1

0 1
( )

n
n

n
n

c c s c sE s
d d s d s

−
−+ + +

=
+ + +

…
…

. (8) 

 
If all the poles of ( )E s  are located in the left-hand side (LHS) of the complex s-plane, 
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then Eq. (7) converges and can be solved by partial-fraction expansion. For n up to 10 the 
values of 3I  exist in a tabular form. Table 2 contains the integrals for n up to 4. 
 

2
0

3,1
0 12

c
I

d d
=  

2 2
1 0 0 2

3,2
0 1 22

c d c d
I

d d d
+

=  

2 2 2
1 0 1 1 0 2 0 3 0 2 3

3,3
0 3 0 3 1 2

( ( 2 ) )
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c d d c c c d d c d d
I

d d d d d d
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− +

 

2 2
3 0 3 0 1 2

2
2 1 3 0 1 4

2
1 0 2 0 3 4

2 2
0 1 4 2 3 4

3,4 2 2
0 4 0 3 1 4 1 2 3

( ( )

( 2 )

( 2 )

( ))
2 ( )

c d d d d d

c c c d d d

c c c d d d

c d d d d d
I

d d d d d d d d d

− +

+ −

+ −

+ − +
=

− − +
 

 
Table 2. ISE- performance index 3,nI  for 1, 2, 3, 4n =  

 
3. Optimal Controller Settings Subject to the ISE-Criterion 
 
For a given reference signal ( )r t  or disturbance signal ( )d t  the ISE-performance index 

3I  according to Eq. (7) is a function 3 1 2( , , )I r r …  depending on the adjustable 
controller parameters ( 1, 2, )ir i = …  alone. Let optir  denote the optimal controller 

parameters corresponding to the minimal value of 3I . The solution of this simple 
mathematical optimization problem, 
 

!

3 1 2( , , ) MinI r r =… , (9) 
 
is obtained by setting the partial derivatives of 3I  to zero: 
 

2opt 3opt,

1opt 3opt,

3

1 ,

3

2 ,

0,

0,

r r

r r

I
r

I
r

∂
=

∂

∂
=

∂

…

…

…
 (10) 
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The set of optimal controller parameters, resulting from Eq. (10), represents the minimum 
of 3I  that is always located inside the stable region of the parameter space given by the 
coordinates ir . If several points fulfil Eq. (10), then eventually the second derivative of 

3I  must be calculated in order to check whether the extremal point represents a minimum. 
For the case of several local minima, the absolute minimum provides the optimal 
controller parameters opt ( 1, 2, )i ir r i= = … . 
 
- 
- 
- 
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