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Summary 
 
There are several methods for designing a digital controller. One method is to discretize 
the existing continuous-time controller. The most popular method is to design the digital 
controller directly by extending all known continuous-time design methods to the case 
of discrete-time systems. Following this approach, we present digital controller design 
methods via root locus, Bode diagram, and Nyquist diagrams. A brief discussion is 
presented with regard to the PID controllers, state-space design methods, and optimal 
control for discrete-time systems. 
 
In discretizing continuous-time systems the sample rate is of great concern, since it may 
seriously affect the performance of the closed-loop system. This is demonstrated by 
varying the sampling rate and observing its strong influence upon the root locus of the 
closed-loop system. 
 
1. Design Methods for Digital Controllers 
 
1.1. Introduction 
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The classical discrete-time controller design methods are distinguished into indirect and 
direct techniques. 
 
Indirect techniques: Using these techniques, a discrete-time controller ( )cG z  is 
determined indirectly as follows. Initially, the continuous-time controller ( )cG s  is 
designed in the s-domain, using well-known classical techniques (e.g. root-locus, Bode, 
Nyquist). Then, based on the continuous-time controller ( )cG s , the discrete-time 
controller ( )cG z  may be calculated using one of the discretization techniques presented 
in article Discrete-Time Equivalents to Continuous Time Systems. The indirect 
techniques are presented in Section 1.2. 
 
Direct techniques: These techniques start by deriving a discrete-time mathematical 
model of the continuous-time system under control. Subsequently, the design is carried 
out in the z-domain, wherein the discrete-time controller ( )cG z  is directly determined. 
The design in the z-domain may be done either using the root-locus method (see Section 
1.3) or the Bode and Nyquist diagrams (see Section 1.4). Special attention is given to 
PID discrete-time controller design (Section 1.5).This three-term controller is most 
popular in industrial applications. 
 
1.2. Discrete-Time Controller Design Using Indirect Techniques 
 
The practicing control engineer often has greater knowledge and experience in 
designing continuous-time than discrete-time controllers. Moreover, many practical 
systems already incorporate a continuous-time controller that we desire to replace with a 
discrete-time controller. The remarks above are the basic motives for the 
implementation of indirect design techniques for discrete-time controllers mentioned in 
Section 1.1. Indirect techniques take advantage of the knowledge and the experience the 
designer has for continuous-time systems. Furthermore, in cases where a continuous-
time controller is already incorporated in the system under control, it facilitates the 
design of a discrete-time controller. Consider the continuous-time closed-loop control 
system shown in Figure 1 and the discrete-time closed-loop control system shown in 
Figure 2. The indirect design technique for the design of a discrete-time controller may 
be stated as follows. Let the specifications of the closed-loop systems shown in Figures 
1 and 2 be the same. Assume that a continuous-time controller ( )cG s , satisfying the 
specifications of the closed-loop system shown in Figure 1, has already been determined. 
Then, the discrete-time controller ( )cG z  shown in Figure 2 may be calculated from the 
continuous-time controller of Figure 1, using the discretization techniques presented in 
article Discrete-Time Equivalents to Continuous Time Systems. 
 
It is remarked that in replacing a continuous-time controller by a digital controller, a 
zero-order hold (ZOH) is introduced. This causes additional phase lag, a fact, which 
influences the closed-loop system performance. 
 
1.3. Direct Digital Controller Design via the Root-Locus Method 
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The root-locus method is a direct method for determining ( )cG z  and is applied as 
follows. Consider the closed-loop system shown in Figure 3. The transfer function H(z) 
of the closed-loop system is 

( )( )
1 ( ) ( )

G zH z
G z F z

=
+

           (1) 

 
The characteristic equation of the closed-loop system is 
 
1 ( ) ( ) 0G z F z+ =            (2) 
 
For linear time-invariant systems, the open-loop transfer function ( ) ( )G z F z  has the 
form 
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Substituting (3) in (2) yields the algebraic equation 
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Figure 1. Continuous-time closed-loop system 
 

 
 

Figure 2. Discrete-time closed-loop control system 
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Figure 3. Discrete-time closed-loop system 
 

Definition 1: The root-locus of the closed-loop system of Figure 3 is the locus of (4) in 
the z-domain as the parameter K varies from −∞  to +∞ . Since the poles ip−  and the 
zeros iz−  are, in general, functions of the sampling time T, it follows that for each T 
there corresponds a root-locus of (4), thus yielding a family of root-loci for various 
values of T. 
 
The root-locus of (4) is constructed using the well-known simple root-locus rules. 
 
1.4. Direct Digital Controller Design Based on the Frequency Response 
 
1.4.1. Introduction 
 
The well-established frequency domain controller design techniques for continuous-
time systems can be extended to cover the case of discrete-time systems. At first, one 
might think of carrying out this extension by using the relation sTz e= . Making use of 
this relation, the simple and easy to use logarithmic curves of the Bode diagrams for the 
continuous-time case cease to hold for discrete-time systems (that is why the extension 
via relation sTz e=  is not recommended). To maintain the simplicity of the 
logarithmic curves for the discrete-time systems, we make use of the following bilinear 
transformation 
 

1 / 2
1 / 2

Twz
Tw

+
=

−
 or 

2 1
1

zw
T z

−⎡ ⎤= ⎢ ⎥+⎣ ⎦
           (5) 

 
The transformation of a function of s to a function of z based on the relation sTz e= , 
and subsequently the transformation of the resulting function of z to a function of w 
based on Eq. (5), are presented in Figure 4. The figure shows that the transformation of 
the left-half complex plane on the s-plane transforms into the unit circle in the z-plane 
via the relation sTz e= , whereas the unit circle on the z-plane transforms into the left-
half complex plane in the w-plane, via the bilinear transformation of Eq. (5). 
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Figure 4. Mappings from the s-plane to z-plane and from z-plane to w-plane 
 
At first sight, it seems that the frequency responses would be the same in both the s and 
the w domain. This is actually true, with the only difference that the scales of the 
frequencies w and v are distorted, where v is the (hypothetical or abstract) frequency in 
the w-domain. This frequency “distortion” may be observed if in Eq. (5) we set w jv=  

and i Tz e ω= , yielding 
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Therefore 
 

2 tan
2
Tv

T
ω

=            (6) 

 
Since 
 

3( )tan ...
2 2 8
T T Tω ω ω
= − +            (7) 

 

it follows that for small values of ωT we have that tan
2 2
T Tω ω
≅ . Substituting this 

result in equation (6) we have 
 
v ω≅ , for small ωT (8) 
 
Therefore, the frequencies ω and v are linearly related if the product ωT is small. For 
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greater ωT, Eq. (8) does not hold true. Figure 5 shows the graphical representation of 
Eq. (6). It is noted that the frequency range / 2 / 2s sω ω ω− ≤ ≤  in the s-domain 
corresponds to the frequency range v−∞ ≤ ≤ ∞  in the w-domain, where sω  is defined 
by the relation ( / 2)( / 2) / 2s Tω π= . 
 
- 
- 
- 
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