
UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION – Vol. II – Real-Time Implementation - Ulrich Kiffmeier

©Encyclopedia of Life Support Systems (EOLSS)

REAL-TIME IMPLEMENTATION

Ulrich Kiffmeier
dSPACE GmbH, Technologiepark 25, 33100 Paderborn, Germany.

Keywords: Code generation, Deadline, Digital controllers, Discrete-time systems,
Distributed systems, Embedded systems, Fixed-point arithmetic, Implementation,
Interrupts, Interprocessor communication, Intertask communication, Jitter,
Microcontroller, Multitasking, Real-time systems, Real-time operating systems, Safety-
critical systems, Scheduling, Time-triggered systems.

Contents

1. Introduction
2. A Simple Real-Time System
3. Computational Delay and Jitter
4. Real-Time Integration of Continuous-Time States
5. Implementation on Fixed-Point Processors
6. Implementation on Floating-Point Processors
7. Real-Time Operating Systems
8. Intertask Communication in Multitasking Systems
9. Distributed Real-Time Systems
10. Time Triggered Systems for Safety Critical Applications
11. Development Tools for Real-Time Implementation
Glossary
Bibliography
Biographical Sketch

Summary

Discrete-time digital controllers require real-time execution when connected to a real-
world plant, i.e., the controller task must be activated at fixed points in time and
finished within a given deadline. When designing such a system, the control engineer
must be aware of effects resulting from the finite processing power of the controller
hardware and I/O units. Computational delays and jitter must be considered carefully
when designing a real-time system, because they introduce varying time delays into the
system, leading to a loss of control quality or even instability, and severe physical
damage of the controlled system.

In many cases, control applications require only one simple real-time task. The first part
of this article describes basic implementation techniques for such simple systems,
including a discussion of numerical integration algorithms suitable for real-time
execution, and a comparison of fixed-point versus floating-point arithmetic.

Applications with more than one real-time task require a Real-Time Operating System
(RTOS) to manage task scheduling and pre-emption. For maintainability and security
reasons, the task structure of a multitasking application should be kept as simple as
possible. The intertask communication must be predictable with known delays and

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION – Vol. II – Real-Time Implementation - Ulrich Kiffmeier

©Encyclopedia of Life Support Systems (EOLSS)

minimal jitter.

In advanced control systems, several dedicated controllers are interconnected by means
of a communication network, thus forming a distributed embedded system. To solve the
problem of reliable interprocessor communication arising in distributed real-time
systems, the time-triggered architecture for safety-critical applications is described,
where the communication schedule is completely known a priori to all nodes.

An important trend for the future will be the increasing use of code generators, which
automatically convert a high-level graphical specification of a control system into an
executable real-time program. Furthermore, object oriented design methods based on
the Unified Modeling Language (UML) are becoming increasingly important. These
novel tools help to cope with the complexity of modern control systems and to
accelerate the development process for large real-time applications.

1. Introduction

The mathematical foundations of discrete-time digital controllers require that the
algorithm is executed exactly at predefined points in time. When implementing a
controller on a real-world computer and connecting it to a real-world plant, it is hard to
fulfill this timing requirement. The developer of such a system must be aware of the fact
that this algorithm may be invoked at inaccurate times, cannot be executed infinitely
fast, and may be interrupted by other high-priority computations. Inaccurate timing
introduces all kinds of delays into the control system that may lead to unexpected
behavior, or even instability. The basic effects of real-time execution and real-time
communication will be discussed in this article, including practical implementation
methods to cope with problems arising in this area.

Figure 1. Notations describing a real-time task.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION – Vol. II – Real-Time Implementation - Ulrich Kiffmeier

©Encyclopedia of Life Support Systems (EOLSS)

Figure 1 introduces some basic notations, which are commonly used to describe the
timing of real-time systems. A task is the execution of a sequential program under the
control of an operating system. The task request time is the point in time when the
execution of a task is initiated. For a discrete-time digital controller, the task request
times have a fixed period, which is equal to the sample time of the controller. The
latency is the time span from the initial task request until the processor jumps to the
requested task, which includes the time necessary to finish other high-priority
computations and to perform the context switch. At some point of the running task, the
results will be available, i.e., the actuators of the control system are updated. The time
from the task request until the availability of the results to the outside world is called
computational delay. The computational delay should be considered carefully when
designing the control system. At the end of the task, some cleanup actions are
performed. The total time required to perform all computations of a task is called
execution time. The execution time may vary from one task invocation to another if
some actions are performed conditionally, i.e., the program takes different execution
paths. The resulting worst case execution time (WCET) is another important property
characterizing a task.

The real-time execution of a task is determined by a deadline, which specifies the point
in time when a real-time task must definitely be finished. This requirement is called
hard real-time constraint, in comparison to soft real-time systems where deadlines must
only be met on average. The following focuses on hard real-time systems only.

Note that, for a periodic task, the deadline interval must be less than the sample time to
leave some time for other tasks and perform the necessary context switches. The time
span from the end of a task until the deadline is called laxity. One design goal for a
proper real-time implementation will be to maximize the laxity.

The first part of this article concentrates on simple applications with only one real-time
task executing a control algorithm. The discussion includes the effects of execution time
jitter, numerical integration algorithms suitable for real-time applications, and a
comparison of fixed-point versus floating-point arithmetic. The second part of this
article introduces real-time operating systems (RTOS) for multitasking applications,
including interprocessor communication, and distributed embedded real-time systems.
Finally, novel programming techniques, like automatic code generation and UML based
software design methods are discussed, which will significantly change the
development process for real-time software in the future.

2. A Simple Real-Time System

It is not always necessary to run a control algorithm in a full real-time operating system
environment. For many small applications with only one real-time task, a simple
implementation scheme is sufficient. The heart of such a minimal real-time program is a
so-called interrupt service routine (ISR), which is invoked periodically by the timer of
the controller hardware (see Figure 2). ISRs are similar to real-time tasks, but they are
not under the control of an operation system. When a timer interrupt is received, the
processor jumps to the ISR and computes one step of the control algorithm. After
finishing the ISR, the processor returns to the interrupted background process and

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION – Vol. II – Real-Time Implementation - Ulrich Kiffmeier

©Encyclopedia of Life Support Systems (EOLSS)

continues computations there.

Figure 2. Timing diagram of a simple real-time program.

Figure 3. Typical real-time interrupt service routine (ISR).

Figure 3 shows an ISR in greater detail with the typical sequence of commands to be
performed for a control application. As an example, the right side of Figure 3 shows the
C code which implements a simple PI controller with the state equations

(1) () ()
() () ()I P

x k x k u k
y k K x k K u k
+ = +

= +

One of the first actions performed in the ISR is the overload check. The processor is
overloaded if the ISR is still active at the time it is invoked again by the next interrupt.
This means that computations could not be finished within the given deadline. Such a
fatal violation of the real-time constraint must be signaled to the supervisory code by
setting an overload flag.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION – Vol. II – Real-Time Implementation - Ulrich Kiffmeier

©Encyclopedia of Life Support Systems (EOLSS)

After reading the sensor signals and computation of the control algorithm, the outputs
are immediately written to the actuators. This is done as early as possible to minimize
the delay between the interrupt and the availability of the results. The ISR is completed
by updating the state variables of the controller for the next sample step. Finally, some
cleanup actions are performed and the processor registers are restored before leaving the
ISR.

So far, only the real-time portion of the application was discussed. The full program
also consists of a startup procedure and the so-called background process, which is
executed while the ISR is not active (see Figure 4). At program start, the main()
function first initializes all I/O units and sets the period of the timer interrupts equal to
the sample time. After finishing all initializations, interrupts are enabled to start the real-
time execution of the control algorithm. While the background process is periodically
interrupted by the ISR, it executes the supervisory code in an endless loop. The
supervisory code is responsible for reporting error conditions and for exchange of non-
time-critical data with the man-machine-interface, which may be located on another
node in the network.

The man-machine-interface visualizes signals from the real-time system and manages
user commands like stopping and restarting the controller by sending appropriate
signals to the real-time system. It may also provide instruments to modify controller
parameters within given limits. Note that the controller states must be re-calculated
properly when the parameters are changed at run-time to enable bumpless transitions.
Also, changing a parameter set at run-time must be synchronized with the controller
task. Typically, the complete new parameter set is provided in a buffer, and the
controller just sets a pointer to the active buffer at the beginning of the real-time task.

Figure 4. Typical main() function and background process.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION – Vol. II – Real-Time Implementation - Ulrich Kiffmeier

©Encyclopedia of Life Support Systems (EOLSS)

3. Computational Delay and Jitter

On real-world hardware, a control algorithm cannot be executed infinitely fast. There
will be a time delay between the beginning of a sample interval, i.e., the activation of
the ISR, the reading of sensors and the final update of the actuators. This time span is
called the computational delay.

The computational delay depends on the processor speed and the complexity of the
control algorithm. From the control engineers perspective, it introduces a phase shift
into the system, as shown in Figure 5. For some applications, the computational delay
might be negligible, but for others it is crucial to take this effect into account from the
beginning when the controller is designed. Otherwise the control quality suffers, or the
system might even become unstable in critical cases. Normally, the computational delay
will be incorporated in the actuator model and regarded as a part of the plant model
when calculating the controller parameters.

Figure 5. Controller with computational delay.

It is difficult to predict the computational delay for a control algorithm on given target
hardware. It depends on many parameters, including processor speed, memory chips,
caching effects, compiler optimizations, etc. Although there are some utilities available
to calculate execution times for a given hardware architecture, the most practical
approach is still to measure the computational delay directly, for example, by reading
the timer, or using an oscilloscope. If the computational delay is significant compared to
the time constants of the system, the controller parameters must be re-calculated
assuming an ideal controller and regarding the delay as part of the plant model (Figure
5).

Figure 6. Timing diagram with jitter of input and output statements.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION – Vol. II – Real-Time Implementation - Ulrich Kiffmeier

©Encyclopedia of Life Support Systems (EOLSS)

The situation becomes even worse if the program contains parts that are executed
conditionally, for example, if different controller modes are selected depending on the
operating point. Due to the varying execution time when the program takes different
execution paths, there is a jitter in the time between two sensor or actuator updates as
shown in Figure 6.

T Sample time of the controller.

OT Mean execution time from the beginning of the ISR until the update of the
outputs.

j Difference between the maximum and minimum value of OT .

Note that the time between two output updates varies from T j− up to T j+ , i.e.
the maximum difference is 2 j . The following numerical example shows the
importance of the jitter effect:

Suppose a signal with 10 V amplitude and 1 kHz frequency is sampled with a 16-bit
A/D converter. The rise time of the signal is

max max
sin() 62dy d mVA t A

dt dt s
ω ω

μ
= = = (1)

and the resolution of the A/D converter is

2 20 0.31
655362n

A Vr mV= = = (2)

which means that with a jitter of 1 μs, the uncertainty of the measurement is 200 times
the resolution of the A/D converter. In other words, roughly 8 bits of precision are lost
in the worst case!

For a control algorithm without direct feedthrough (0PK =), the output jitter can be
significantly reduced by writing the outputs at the beginning of the next sample interval,
i.e., by pre-computing the controller output for the next sample step at the end of the
current step.

With this implementation policy, the output jitter is independent of the execution time
of the control algorithm.

It should be mentioned here that a prerequisite for good control quality is an accurate
sensor interface. If the sensors are exposed to deterministic or stochastic disturbances,
analog pre-filters, anti-aliasing filters, or over-sampling methods should be applied to
reduce the noise and to remove high frequency disturbances from the input signal before
using it in the control algorithm. When initializing the controller, the filter states should
be initialized properly. For example, if a temperature sensor is connected to a low pass
filter, the low-pass state variable should be initialized with the current temperature

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION – Vol. II – Real-Time Implementation - Ulrich Kiffmeier

©Encyclopedia of Life Support Systems (EOLSS)

rather than with zero.

void TimerISR(void)
{
 EnterISR();
 WriteDAC(y);
 u = ReadADC();
 x = UpdateEquation(x,u); /* compute x(k+1)
/ y = OutputEquation(x); / compute y(k+1)
*/
 LeaveISR();
}

-
-
-

TO ACCESS ALL THE 25 PAGES OF THIS CHAPTER,

Click here

Bibliography

Booch G., Rumbaugh J., Jacobson I. (1999). The Unified Modeling Language Users Guide. Addison
Wesley, Reading, Ma. [Introduction to the Unified Modeling Language (UML) for object oriented
software design. Useful for high-level system design and behavioral modeling].

Burns A., and Wellings A.J. (1989). Real-Time Systems and their Programming Languages. Addison
Wesley, Reading, Ma. [Textbook providing an introduction into real-time systems].

Hanselmann H., Kiffmeier U., Köster L., and Meyer M. (1999) Automatic Generation of Production
Quality Code for ECUs, SAE International Congress 99, March 1-4, Detroit, USA, (SAE Technical Paper
Series 1999-01-1168). [Discusses the requirements for production-ready real-time code generation for
embedded automotive control units].

Hoare C.A.R. (1985). Communicating sequential processes. Englewood Cliffs, Prentice Hall, USA.
[Textbook on concurrent computation including a description of monitors].

Kopetz H. (1997). Real-Time Systems. Design Principles for Distributed Embedded Applications.Kluwer
Academic Publishers, Boston, USA. [Standard textbook with a focus on hard real-time systems and
distributed embedded systems. Provides a good introduction to time-triggered systems].

Köster L., Thomsen T., and Stracke R. (2001) Connecting Simulink to OSEK: Automatic Code
Generation for Real-Time Operating Systems with TargetLink, SAE International Congress 2001, Detroit,
USA (SAE Technical Paper Series 01PC-117). [Describes an approach for automatic code generation
from Simulink block diagrams with connection to the OSEK operating system].

Mathai J. (Ed.) (1995). Real-time Systems: Specification, Verification and Analysis. London: Prentice
Hall International.. [Collection of articles about Real-Time System design, including scheduling
problems].

MISRA (1994) Guidelines for Vehicle Based Software, Nuneaton, UK: Motor Industry Software
Reliability Association. [Contains a set of rules for software development for safety critical real-time
systems. See also: http://www.misra.org.uk/.]

http://www.eolss.net/Eolss-sampleAllChapter.aspx
https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-43-04-04

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION – Vol. II – Real-Time Implementation - Ulrich Kiffmeier

©Encyclopedia of Life Support Systems (EOLSS)

MISRA (1998) Guidelines for the Use of C Language in Vehicle Based Software, Nuneaton, UK: Motor
Industry Software Reliability Association. [Contains a set of rules for C programming for safety critical
real-time systems. Widely accepted as a standard].

Open Systems and the Corresponding Interfaces for Automotive Electronics. OSEK/VDX Specification
Vs. 2.1, Karlsruhe, Germany, http://www-iiit.etec.uni-karlsruhe.de/~osek/main.html. [A scalable RTOS
which has become a standard for automotive applications. Available for most relevant microcontrollers.
An extension for time triggered systems is under preparation].

Sha L., Rajkumar R., and Lehoczky J.P. (1990). Priority Inheritance Protocols: An Approach to Real-
Time Synchronization. IEEE Transactions on Computers. 39 (9), 1175-1185. [Introduces the Priority
Ceiling Protocol that helps to avoid deadlocks through priority inversion in multitasking systems].

The MathWorks (2000). Simulink User’s Guide, The MathWorks, Nattick, MA USA. [A block-diagram
based tool to model and simulate control systems. Accompanied by the Real-Time Workshop, a code
generator for Simulink block diagrams used for rapid controller prototyping].

Tsai J.J.P., Bi Y.., Yang S.J.H., and Smith R.A.W. (1996). Distributed Real-Time Systems. Monitoring,
Visualization, Debugging and Analysis. John Wiley & Sons, New York, USA. [Textbook with a focus on
monitoring of distributed embedded real-time systems].

Biographical Sketch

Ulrich Kiffmeier studied control engineering at the Ruhr-University Bochum, Ulrich Kiffmeier worked
for 5 years as a Research Assistant at the Automatic Control Lab in Bochum, where his research interests
were in the area of robust control and computer aided control engineering. After receiving his Ph.D. in
1994, he joined dSPACE where he was responsible for real-time code generation for embedded
multiprocessor systems. He also headed up several hardware-in-the-loop simulation projects. Since 1997,
Ulrich Kiffmeier has worked as a team leader in the development of the production code generator
TargetLink, which is focused on highly efficient C code generation for automotive control units.

