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Summary 
 
Based on the state variable description of dynamic systems and its analysis, this chapter 
presents approaches to the design of closed-loop control. A linear weighted sum of state 
variables is fed back to the control input of the plant, the resulting control law is called 
state feedback. 
 
 This allows the control-system designer to place all of the n eigenvalues of the closed-
loop system in desirable locations, mostly referred to as pole placement or pole 
assignment. The stability can thereby be assured and the transient behavior be adjusted. 
A frequently used design procedure is described by Ackermann’s formula.  
 
A special feature of discrete-time state feedback control occurs, when the n eigenvalues 
are placed at the origin of the complex plane: the initial state of the system decays to 
zero after a maximum of n steps, which is called dead-beat behavior.  
 
1. Objectives and Structure of State Feedback Control 
 
Starting point is the state space description of a dynamic system with one scalar control 
input u(t), one scalar control output y(t), and the (n,1)-state vector (or n-vector of state) 
x(t),  
 
State differential equation:  ( ) ( ) ( )t t u t= +x Ax b ,  (1) 
 
Output equation:  T( ) ( )y t t= c x .  (2) 
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Beside the control input, the system is influenced from outside by the vector of initial 
values, the initial state  
 

0 0( )t =x x .   (3) 
In most cases, the initial state will not be known. A first objective is therefore to 
eliminate the effect of this initial state disturbance. For this purpose, a feedback is 
required in order to continuously gather information on the system’s state and to 
generate an appropriate control input u(t). As the system is described in state variable 
form, it is a good idea to feed back the states to the control input,  
 

( ( ), )u k t t= − x .  (4) 
 
At first, k(.) is some function of the state variables 1( ),..., ( )nx t x t  and of the time t (The 
conceivable consideration of integrals or time derivatives of state variables within the 
control law is in fact not required, because from the state and from the control input, the 
further trajectory x(t) is uniquely given; derivatives and integrals utilize history values 
which do not deliver additional information, at least in state feedback control as 
considered here).  
 
A special case of (4) is linear time invariant state feedback of the form 
 

[ ]
1

T
1 1 1( ) ( ) ... ( ) ( )n n n

n

x
u t k x t k x t k k t

x

⎡ ⎤
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Here, the controller weights the sum of the state variables in a linear manner.  
 
Beside the objective of eliminating initial value disturbances, a second objective is to 
choose the control input u such that the control output y tracks a given reference r(t). 
Therefore, the control input can no longer only be calculated from the states but also 
from the reference r. Setting up this influence in linear form, the control law (5) is to be 
extended by an appropriate summand,  
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It will turn out soon, that with this simple approach a precise tracking of the reference r 
by the output y will only be achieved for t →∞  and only if r tends to a constant value 
as t →∞ .  
 
The extended control law (6) will be denoted as state feedback law or state feedback for 
the rest of this text. Figure 1 implies the structure of the control plant with state 
feedback. The block Tk  is also referred to as state feedback controller, the block g is a 
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pre-compensator.  
 
By substituting the control law (6) into the state differential Eq. (1) of the plant, the 
state differential equation of the closed loop system is obtained: 

T( ) ( ) ( ) ( )t t gr t= − +x A bk x b .  (7) 
 

 
 

Figure 1:  Structure of the control plant with state feedback 
 
It is of the same type as the original state differential equation with the system matrix 

T( )−A bk  instead of A and with the vector bg instead of b. The trajectory x(t) of the 
closed-loop system is therefore given by Eq. (69) in Description and Analysis of 
Dynamic Systems in State Space, if the initial state and the reference signal r(t) are 
known,  
 

TT
0

0

( )( )( )( )
0( ) ( )

t
t tt

t

t e gr d eτ τ τ − −− −= +∫ A bkA bkx b x .  (8) 

 
We can now formulate the objective of eliminating the influence of initial value 
disturbances more precisely: The trajectory starting from an arbitrary initial state 0x  is 
to converge to zero as t →∞ , while r(t)=0.  
 
Calling in mind the results on stability, we observe that this will happen if the system is 
stable. And the closed loop system (7) will obviously be stable if all of the eigenvalues 
of T( )−A bk  are located in the left half of the complex plane. The specific location of 
these closed-loop eigenvalues (or so-called control eigenvalues) determines speed and 
other characteristics of the transient behavior.  
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For the practical application it is convenient, if all of the n closed-loop eigenvalues can 
be specified arbitrarily by the control-system designer. This allows to not only stabilize 
the system but to influence in detail the transient behavior of the closed-loop system. 
The design objectives can now be summarized as follows:  
 
Consider a control plant (1), (2) with the linear time-invariant state feedback (6),  
 

T( ) ( ) ( )u t t g r t= − +k x .  (9) 
Find a state feedback controller [ ]T

1 nk k=k  and a pre-compensator g such that 
the closed-loop system 
 

T( ) ( ) ( ) ( )t t gr t= − +x A bk x b ,  (10) 
 

T( ) ( )y t t= c x ,  (11) 
 
1. possesses desired eigenvalues, specified by the control-system designer, in order to 

ensure stability and to form the dynamic behavior,  
2. avoids steady state error, i.e. ensures that the control output y(t) tends towards the 

reference signal r(t) while t →∞  and with ( ) .r t const=  
 
By Laplace transform of Eqs. (10), (11) and by elimination of the state vector x, the 
input-output behavior of the closed-loop system is obtained by its transfer 
function r ( )G s , 
 

r

T T 1

( )

( ) ( ) ( )
G s

Y s s g R s−= − +c I A bk b .  (12) 

 
This chapter focuses on the design of state feedback (9) in the context of closed loop-
systems (10), (11). Relevant assumptions are:  
 
• All state variables are accessible for measurement and feedback, 
• Initial state disturbances are the only disturbances occurring, in particular, there are 

no permanent disturbances, 
• The reference signal is constant for most of the time or, at least, changes slowly. 
 
Of course, these assumptions are not always fulfilled in practice, but the resulting 
problems can be overcome by additional measures like state estimators (See Observer 
Design) and extended control structures (see Control of Linear Multivariable Systems 
and Extended Control Structures).  
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