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Summary 
 
The technical realization of state feedback controllers requires that all of the n state 
variables are accessible to measurement and feedback. This is not always the case due to 
cost and availability of measurement equipment or for other reasons. The problem can 
be overcome by introducing a so-called state estimator or state observer, generating an 
estimate of the state x from only one measured system variable and the accessible 
control input u.  
 
This state estimate is then used for operating state feedback controllers as introduced in 
Controller Design. It will turn out that integrating the observer into the closed-loop 
system does not shift the eigenvalues away from the locations originally specified, i.e. 
state observer and state feedback can be designed separately. Thereby, the combination 
of state observer and state feedback become a powerful tool of linear control-system 
design.  
 
1. Objectives and Structure of the State Observer 
 
Consider the state space description of a linear time-invariant dynamic system with one 
scalar control input u(t) and the (n,1)-state vector x(t),  
 
State differential equation: ( ) ( ) ( )t t u t= +x Ax b ,  (1) 
 
and the,  
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Initial state: 0 0( )t =x x .  (2) 
 
The design of state feedback controllers as introduced in Controller Design assumes 
that all the elements of the state vector are at our disposal. If this is not the case, one 
may think of estimating instead of measuring the state. This idea is investigated in the 
following sections with the objective of generating a state estimate from only one 
system variable accessible to measurement. This measurement output variable is defined 
by 
 
Measurement equation: T( ) ( )y t t= c x ,  (3) 
 
i.e., as a linear combination of the states. In many cases the measured output is identical 
to the control output y as used in Description and Analysis of Dynamic Systems in State 
Space, and Controller Design. Otherwise, in order to avoid confusion, we will add a 
subscript c to the control output and define it by  
 
Output equation: T

c c( ) ( )y t t= c x .  (4) 
 
A simple approach to the estimation of the system state is shown in Figure 1: a model of 
the plant is installed in parallel to the control plant, where the model 
ˆ ˆ( ) ( ) ( )t t u t= +x Ax b  is driven by the same control input signal u as the real control 
plant. Provided both systems start from the same initial state, we may hope that they 
will follow the same trajectories, i.e. ˆ ( ) ( )t t=x x .  

 

 
 

Figure 1:  Simple approach to state estimation by a parallel model 
 
In practice however, the initial state will not be known. Therefore the structure of the 
observer has to be extended. Following an idea of D.G. Luenberger this is done by 
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comparing the measurement output T( ) ( )y t t= c x  with the corresponding variable 
Tˆ ˆ( ) ( )y t t= c x  (generated from the state estimate x̂ ) and by feeding back this difference 

into the model with an appropriate gain l. The resulting structure is shown in Figure 2 
and is called state estimator, state observer, or Luenberger state observer.  

 

 
 

Figure 2:  Structure of a state observer 
 
The difference ˆy y−  is fed back directly into the model via a vector l of gain 
factors 1,..., nl l . Thus, the state differential equation of the parallel model is 
 

( )ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )t t u t y t y t= + + −x Ax b l ,  (5) 
 
and by substituting 
 

Tˆ ˆ( ) ( )y t t= c x ,  (6) 
 

we obtain 

 
Tˆ ˆ( ) ( ) ( ) ( ) ( )t t u t y t= − + +x A lc x b l .  (7) 
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The problem remaining is to select the gain vector l so that the state estimate ˆ ( )tx  
converges to the state vector ( )tx . We summarize:  
 
A state observer for the plant ( ) ( ) ( )t t u t= +x Ax b  with the measurement output 

T( ) ( )y t t= c x  is set up as 
 

Tˆ ˆ( ) ( ) ( ) ( ) ( )t t u t y t= − + +x A lc x b l .  (8) 
 
The design task is to select the gain vector l so that the estimation error 
 

ˆ( ) ( ) ( )t t t= −x x x   (9) 
 
converges to zero as t →∞  for any initial states 0 0ˆ( ), ( )t tx x .  
 
If we succeed in finding an appropriate l, we can use state x̂  as an estimate of the real 
state vector x for a variety of purposes and in particular for operating a state feedback 
controller.  
 
2. Design of the Observer 
 
In order to find out under what conditions the estimation error ˆ( ) ( ) ( )t t t= −x x x  decays, 
its time derivative is determined,  
 

Tˆ ˆ( ) ( ) ( ) ( )t t t u u y= − = + − − − −x x x Ax b A lc x b l .   
 
With T( ) ( )y t t= c x , this equation simplifies to 
 

T Tˆ( ) ( )( ) ( )t = − − = −x A lc x x A lc x ,  (10) 
 
which is a differential equation of x , the so-called state error differential equation. It is 
a homogeneous state differential equation with the solution 
 

T
0( )( )

0( ) ( )t tt e t− −= A lcx x .  (11) 
 
Its stability properties can easily be examined: The estimation error x  will converge to 
zero if and only if all eigenvalues of T( )−A lc   - the so-called observer eigenvalues -  
are located in the left half of the complex plane. The observer is then called stable. The 
objective of the control-system engineer is to select l so that T( )−A lc  has stable 
eigenvalues in order for x  to decay to zero.  
 
By analogy to state feedback design, we will specify the eigenvalues of T( )−A lc  and 
then determine the appropriate vector l. The design steps are substantially the same as in 
the design of state feedback controllers by pole placement. This analogy can be 
expected at a glance when comparing the matrix T( )−A lc  with the system matrix 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION – Vol. III – Observer Design - Boris Lohmann 

©Encyclopedia of Life Support Systems (EOLSS) 

T( )−A bk  of a state feedback controlled system. 
 
2.1. Observer Design by Matching of Coefficients 
 
The control-system designer specifies n eigenvalues 1,..., nβ β . In order to make them 
eigenvalues of the matrix T( )−A lc , the vector l is to be found so that the characteristic 
equation of T( )−A lc  has the roots 1,..., nβ β  , i.e. 
 

T
1det( ) ( ) ... ( )ns s sβ β− + = − ⋅ ⋅ −I A lc .  (12) 

 
By calculating the determinant and expanding the right hand side, we obtain  
 

1 1
1 0 1 0( ) ... ( ) ...n n n n

n ns a s a s p s p− −
− −+ ⋅ + + = + + +l l , (13) 

 
where the coefficients aν  are functions of the elements 1,..., nl l  of l. By setting like 
coefficients equal to each others, the n equations 
 

1 1

0 0

( ) ,

( ) .

n na p

a p

− −=

=

l

l
 

 
are obtained. In fact, they are linear in the n unknowns and can be solved for 1,..., nl l  
easily. This determines the observer.  
 
The observer gain vector  
 

1

n

l

l

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

l ,  (14) 

 
found by solving the n linear equations 
 

1 1

0 0

( ) ,

( ) ,

n na p

a p

− −=

=

l

l
  (15) 

 
places the eigenvalues of T( )−A lc  in the desired locations 1,..., nβ β . 

( )aν l are the coefficients of the characteristic polynomial Tdet( )s − +I A lc ,  
pν are the coefficients of the desired polynomial  

 
1

1 1 0( ) ( ) ... ( ) ...n n
n np s s s s p s pβ β −

−= − ⋅ ⋅ − = + + + . 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION – Vol. III – Observer Design - Boris Lohmann 

©Encyclopedia of Life Support Systems (EOLSS) 

- 
- 
- 
 

 
TO ACCESS ALL THE 18 PAGES OF THIS CHAPTER,  

Click here 
 

 
Bibliography 
 
Ackermann J. (1972). Der Entwurf linearer Regelungssysteme im Zustandsraum. Regelungstechnik 20, 
297-300. [Presents Ackermann’s formula] 

DeCarlo R.A. (1989). Linear Systems. Prentice Hall. [Includes an introduction to the description and 
analysis by state space methods]. 

Franklin G.F., Powell J.D. and Emami-Naeini A. (1994). Feedback Control of Dynamic Systems, 3rd 
edition. Addison-Wesley. [Textbook with good introduction to the key objectives of automatic control. 
Mathematical appendix]. 

Gilbert E.G., (1963). Controllability and Observability in Multivariable Control Systems. J. Control, Ser. 
A, 1,. 128-151. [Includes the controllability/observability criteria presented]. 

Hautus M.L.J. (1969). Controllability and Observability Conditions of Linear Autonomous Systems. 
Indagationes Mathematicae 31, 443-448. . [Includes the controllability/observability criteria presented]. 

Kaczorek T. (1992). Linear Control Systems. Volume 1 and 2. Research Studies Press. [Extensive 
theoretical work; includes linear differential algebraic systems and many details]. 

Kailath, T. (1980). Linear Systems. Prentice Hall. [A standard textbook on linear theory]. 

Kalman, R.E. (1960). A new Approach to Linear Filtering and Prediction Problems. J. Basic 
Engineering85, 394-400. [An initial work on state space methods]. 

Kalman R.E. (1960). On the General Theory of Control Systems. Proc. 1st Int. Congr. Autom. Control, 
Moscow, pp. 481-492. [An initial work on state space methods]. 

Kuo B.C. (1995). Automatic Control Systems, 7th edition. Prentice Hall. [Extensive textbook. Some 
details missing in favor of good readability]. 

Luenberger D.G. (1964). Observing the State of a Linear System. IEEE Transactions on Military 
Electronics 8, 74-80. [Presents Luenberger’s approach to state observers]. 

Luenberger D.G. (1966). Observers for Multivariable Systems. IEEE Transactions on Automatic Control 
11, 190-197. [Presents Luenberger’s approach to state observers]. 

Luenberger D.G. (1971). An Introduction to Observers. IEEE Transactions on Automatic Control 16, 
596-602. [Presents Luenberger’s approach to state observers]. 

MacFarlane A.G.J. and Karcanias N. (1976). Poles and Zeroes of linear multivariable systems: a survey 
of the algebraic, geometric and complex-variable theory. Int. J. Control 24, 33-74. [Introduces the 
concept of invariant zeros from a state variable approach]. 

Shinners S.M. (1998). Advanced Modern Control System Theory and Design. John Wiley & Sons. [A 
recent textbook]. 

MATLAB applications: The following two web-addresses provide introductory examples on how to use 
the software package MATLAB for control system design purposes: http://tech.buffalostate.edu/ctm/ and 
http://www.ee.usyd.edu.au/tutorials_online/matlab/index.html 
 
 
 

http://www.eolss.net/Eolss-sampleAllChapter.aspx
https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-43-05-03


UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION – Vol. III – Observer Design - Boris Lohmann 

©Encyclopedia of Life Support Systems (EOLSS) 

Biographical Sketch 
 
Boris Lohmann received the Dipl.-Ing. and Dr.-Ing. degrees in electrical engineering from the Technical 
University of Karlsruhe, Germany, in 1987 and 1991 respectively. From 1987 to 1991 he was with the 
Fraunhofer Institut (IITB) and with the Institute of Control Systems, Karlsruhe, working in the fields of 
autonomous vehicles control and multi-variable state space design.  

From 1991 to 1997 he was with AEG Electrocom Automation Systems in the development department 
for postal sorting machines, at last as the head of mechanical development. In 1994 he received the 
'Habilitation' degree in the field of system dynamics and control from the Universität der Bundeswehr, 
Hamburg, for his results on model order reduction of nonlinear dynamic systems.  

Since 1997 he has been full professor at the University of Bremen, Germany, and head of the Institute of 
Automation Systems. His fields of research include nonlinear multivariable control theory; system 
modeling, simplification, and simulation; and image-based control systems, with industrial applications in 
the fields of autonomous vehicle navigation, active noise reduction, error detection and fault diagnosis. 


