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Summary 
 
A significant amount of the research into nonlinear differential equations in the 
nineteenth and early twentieth centuries done by mathematicians was devoted to second 
order differential equations. There were two major reasons for this, namely that the 
dynamics of many problems of practical interest could be approximated by these 
equations and secondly the phase plane approach allowed a graphical examination of 
their solutions. This section gives a brief overview of how the phase plane approach was 
developed for use in control system analysis and design. 
 
The major contribution of control engineers was to consider use of the approach for 
nonlinear elements which could be defined by linear segmented characteristics, good 
approximations for many of the nonlinear effects in control systems, rather than 
continuous mathematical functions considered previously. A major advantage of the 
approach, as illustrated in this section, is that it can be used when more than one 
nonlinearity are present in the feedback loop. 
 
1. Introduction 
 
The dynamic equations representing many simple control systems, for example those of 
a position control system, may often be represented by second order nonlinear 
differential equations. Also in the early years of the development of control theory, from 
say 1930-1960, there was a major interest in these types of systems for the position 
control of radar antennas, guns and later radio telescopes. Further systems described by 
second order nonlinear differential equations representing problems found in nonlinear 
mechanics and electronic oscillations had been studied previously in the late nineteenth 
and early twentieth centuries by physicists using the phase plane method. It was 
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therefore not surprising that much of the early work on nonlinear control used this 
approach. Control engineers did make significant contributions to this field since, 
whereas the earlier work had typically assumed nonlinearities defined by continuous 
mathematical functions, for control system analysis it was often more appropriate to 
approximate intrinsic nonlinearity, such as friction, or intentionally introduced 
nonlinearity, such as a relay, by linear segmented characteristics. The approach is still 
useful today because of the physical understanding it can provide and also because more 
than one nonlinearity can be considered. 
 
2. Basic Principles 
 
The formulation used in early work on second order systems was to assume a 
representation in terms of the two first order equations 
 

1 1 2
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Equilibrium, or singular points, occurs when 
 

1 2 0x x= =  
 
and the slope of any solution curve, or trajectory, in the 1 2-x x  state plane is 
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The basic approach used was to determine the slope at a sufficient number of points in 
the state plane to allow a picture of the motion to be obtained starting from any initial 
conditions in the 1 2-x x  state plane. Typically a second order nonlinear differential 
equation representing a control system with smooth nonlinearity can be written as 
 

( , ) 0x f x x+ =  
 
and if this is rearranged as two first order equations, choosing the phase variables as the 
state variables, that is  1 2,x x x x= = , then it can be written as  
 

 1 2

2 1 2- ( , )
x x
x f x x
=
=

 (3) 

 
which is a special case of Eq. (2). A variety of procedures have been proposed for 
sketching phase plane trajectories for Eq. (3). A complete plot showing trajectory 
motions throughout the entire phase plane from different initial conditions is known as a 
phase portrait. Today’s simulation methods enable phase plane trajectories to be easily 
displayed and they can often more clearly provide a picture of the system behavior than 
time response plots for 1x  and 2x . 
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Many investigations using the phase plane technique were concerned with the 
possibility of the nonlinear differential equations having limit cycle solutions. When a 
limit cycle exists this results in a closed trajectory in the phase plane and typical of such 
investigations was the work of Van der Pol on oscillators. He considered the equation 
 

2(1 ) 0x x x xμ− − + =  (4) 
 
where μ  is a positive constant. The phase plane form of this equation can be written as 
 

1 2x x=  
 

2
2 1 2 1 2 1 - ( ,  ) (1- ) -x f x x x x xμ= =  

 
The slope of a trajectory in the phase plane is 
 

2
2 2 1 2 1

1 1 2

(1 )dx x x x x
dx x x

μ − −
= =  (5) 

 
which is only singular (that is at an equilibrium point), when the right hand side of Eq. 
(5) is 0/0, that is 1 2 0x x= = . 
 
The form of the singular point, which is obtained from linearization of the equation at 
the origin, depends upon μ , being an unstable focus for 2μ <   and an unstable node 
for 2μ >  . All phase plane trajectories have a slope of r  when they intersect the curve 
 

2
2 1 2 1(1 )rx x x xμ= − −  (6) 

 
One way of sketching phase plane behavior is to draw a set of curves for various 
selected values of r  in Eq. (6) and marking the trajectory slope r  on the curves, a 
procedure known as the method of isoclines. Figure 1 shows results sketched using 
isoclines for this equation with 0.2 and 5.0μ = , respectively. 
 
If a harmonic balance approach (see Chapter Describing Function Method) is used for 
this equation one assumes 1 sinx a tω=  and 2 1 cosx x a tω ω= = . Rewriting Eq. (4) as 
 

2
2 1 1 2(1 )x x x xμ+ = −  

 
then substituting for 1x  and 2x  and neglecting frequencies higher than ω  in the right 
hand side gives 
 

3
2 sin sin ( cos cos )

4
aa t a t a t tωω ω ω μ ω ω ω− + = − . 

 
For this to be true requires 
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1ω =  
and 
 

3 / 4a aω ω= , 
 
that is a limit cycle solution, which is independent of μ , with frequency 1 rad/s and 
amplitudes 2 for 1x  and 2x . Thus from Figure 1 it can be seen that this result is only 
reasonable for small values of μ. 
 

 
 

Figure 1: Phase portrait of the Van der Pol equation for different value of μ  
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Many nonlinear effects in control systems, such as saturation, friction etc., are best 
approximated by linear segmented characteristics rather than continuous mathematical 
functions. This is an advantage for study using the phase plane approach since it results 
in a phase plane divided up into different regions but with different linear differential 
equations describing the motion in each region. To illustrate these basic concepts three 
examples are considered in the next section. 
 
- 
- 
- 
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