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Summary 
 
Control systems are usually described by models which are not precise and there is an 
amount of uncertainty. In particular, imprecise nonlinear funtions can be characterized 
by functions having upper and lower bounds defining a certain sector in the state space. 
An equilibrium point =x 0  of a dynamical system, which is globally asymptotically 
stable for all nonlinear functions located in this sector, is called absolutely stable. The 
system is robustly stable against uncertainties. The article lists a number of sufficient 
conditions for absolute stability, among others the well-known circle and Popov criteria. 
 
1. Introduction 
 
This chapter on the Popov and circle theorems for the problem of absolute stability is 
based on  Stability Theory and uses the same notation.  The discussion of the stability 
problem in Stability Theory was based on the assumption that the dynamical system (1) 
or (2)-(3) (in Stability Theory) is described exactly. But this is not always true. 
Particularly, the exact description of nonlinear characteristics is difficult. Therefore, 
investigations have been carried out to overcome these uncertainty problems and to 
guarantee robust stability of a dynamical system with respect to model uncertainties, 
particularly with respect to unknown nonlinear characteristics. In this connection a 
linear time-invariant nominal system is assumed which is asymptotically stable. The 
model uncertainties have to satisfy certain restrictions. Then the question arises if the 
real system remains stable for this class of uncertainties or if it becomes unstable.  
 
The starting point of these considerations is with the linear time-invariant system 
 

( ) ( ) ( )t t t= +x Ax Bu� , (1) 
 

( ) ( ) ( )t t t= +y Cx Du  (2) 
 
describing a nominal behavior. The input vector u represents inaccurately modeled 
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effects or nonlinear actuator characteristics which depend on certain output variables 
(2): 
 

( , )t= −u k y , ( , )t =k 0 0 . (3) 
 
The vector function k may be very general; it is restricted only by a sector condition 
 
[ ] [ ]T

1 2( , ) ( , ) 0t t− − ≤k y K y k y K y  (4) 
 
for certain matrix bounds 1K , 2K . If the dimensions of u and y are equal, r m= , and 
the feedback (3) decomposes into m independent channels, 
 

( , )i i iu k y t= − , 1, ,i m= … , (5) 
 
then the matrices 1K , 2K  are diagonal, 1 1diag( )ik=K  2 2diag( )ik=K , and (4) reduces 
to the usual sector condition 
 

1 2
( , )i i

i i
i

k y tk k
y

≤ ≤ , 1, ,i m= …  ( 1 2i ik k< , 1, ,i m= … ). (6) 

 
We assume that the system (1)-(2) is completely controllable and completely observable 
(otherwise the problem decomposes into trivial or smaller problems of systems of lower 
order) and asymptotically stable for =u 0 . Now the problem of absolute stability can be 
defined. It is also known as the Lur’e (or Lur’e-Postnikov) problem. 
 
Definition 1 (Absolute Stability): The completely controllable and completely 
observable system (1)-(2), which is asymptotically stable for =u 0 , is absolutely stable 
if for all uncertain output feedbacks (3) satisfying the sector condition (4) [or (6)] the 
equilibrium point =x 0  is globally asymptotically stable. 
 
Here, global asymptotic stability means that the equilibrium point is asymptotically 
stable and its domain of attraction is the whole space, i. e. all solutions approach the 
equilibrium point. 
 
Absolute stability guarantees asymptotic stability in the whole for the complete class of 
nonlinearities (3) satisfying the sector condition (4) [or (6)]. Therefore, the stability 
results of Section 3 are valid not only for uncertain nonlinearities but also for well 
defined nonlinearities within the allowed sector. 
 
Sometimes the sector condition is given for 1 =K 0  and 2 =K K , 
 

[ ]T ( , ) ( , ) 0t t − ≤k y k y Ky  (7) 

 
or 
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( , )0 i i
i

i

k y t k
y

≤ ≤ , 1, ,i m= … , (8) 

 
instead of (4) or (6), respectively. But the sector condition (7) or (8) is obtained by 
 

1= −u K y , 2 1= −K K K  (9) 
 
from (4) and (6) for a modified system. Therefore, both formulations are equivalent. 
 
The requirement of the asymptotic stability of the system (1) for =u 0  seems to be a 
strong restriction for the dynamic systems under consideration, but this is not the case. 
In a two step procedure 
 

1 2( ) ( ) ( )t t t= +u u u  (10) 
 
in the first step, 1( )tu  will be designed by methods of linear control theory to stabilize 
the linear system, and in the second step 2 ( )tu  will be considered in the sense of the 
absolute stability problem. Typically, the problem of absolute stability is the demand for 
robust stability of closed-loop control systems which are described and designed 
approximately by linear methods but which additionally are influenced by uncertain 
nonlinear effects. 
 
2. Kalman-Yakubovich-Lemma 
 
In Section 3 sufficient criteria for absolute stability are presented. The related proofs use 
suitably chosen Lyapunov functions where special relations between these functions and 
the transfer function matrix  
 

( ) 1( )s s −= − +G C I A B D  (11) 
 
hold. Some properties of (11) and some related lemmas are summarized in the 
following.  
 
Definition 2 (Bounded Real Transfer Matrix): The transfer function matrix (11) is 
strictly bounded real if there exists a number γ  such that  
 

( )sG  is asymptotically stable, (12) 
 

2( ) ( ) rj jω ω γ∗ <G G I  for all real ω  (13) 
 

T 2
rγ<D D I . (14) 

 
Condition (12) means asymptotic stability of the linear system for =u 0 . In (13)  

* T( ) ( )j jω ω= −G G . 
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Lemma 1 (Bounded Realness): The transfer function matrix (11) of a completely 
controllable and observable system (1)-(2) is strictly bounded real if and only if there 
exist matrices T= >P P 0 , L and W such that 
 

T T T+ + + =A P PA C C L L 0 , (15) 
 

T T+ + =PB C D L W 0 , (16) 
 

2 T T
rγ − = >I D D W W 0 . (17) 

 
Asymptotic stability (12) follows immediately from (15) and vice versa. The 
requirement (14) follows by (17). Finally, the relation 
 

2 ( ) ( ) ( ) ( )r j j j jγ ω ω ω ω∗ ∗− = >I G G H H 0  (18) 
 
can be derived from (15) – (17) where 
 

1( ) ( )nj jω ω −= − +H L I A B W  (19) 
 
is defined. Therefore, (13) is satisfied. The reversal statement is obtained by spectral 
factorization. 
 
Definition 3 (Positive Real Transfer Matrix): A square m m×  transfer matrix (11) is 
strictly positive real if 
 

( )sG  is asymptotically stable, (20) 
 

( ) ( ) 0j jω ω∗ + >G G  for all real ω , and (21) 
 

T + >D D 0 . (22) 
 
Lemma 2 (Positive Real Transfer Matrices; Kalman-Yakubovich): A square 
transfer matrix (11) of a completely controllable and observable system (1)-(2) is 
strictly positive real if there exist matrices T= >P P 0 , L and W such that 
 

T T+ + =A P PA L L 0 , (23) 
 

T T− + =PB C L W 0 , and (24) 
 

T T+ = >D D W W 0 . (25) 
 
The proof proceeds analogously to the preceding one. Stability is assured by (23). 
Inequality (22) follows immediately from (25). Finally (21) is shown by (23 – 25) 
resulting in 
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( ) ( ) ( ) ( )j j j jω ω ω ω∗ ∗+ = >G G H H 0  (26) 
 
where ( )jωH  has been defined by (19). 
 
With the aid of Lemmas 1 and 2 some sufficient criteria for absolute stability can be 
proven. 
 
- 
- 
- 
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