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Summary 
 
Dynamical systems are often influenced by troublesome nonlinear effects such as 
Coulomb friction, hysteresis or backlash. In this chapter an indirect measuring technique 
of the actual values of these nonlinearities is presented. Based on a fictitious model of 
the time behavior of the nonlinearities a linear state observer of an extended dynamical 
system is designed resulting in estimates of the nonlinear effects. In the case of control 
design the disturbance rejection control method is applied to counteract the 
nonlinearities by the estimated signals. Some sufficient criteria for the asymptotic 
stability of the estimation error are given. Additionally some applications are mentioned 
in the fields of high accurate position control of robots and of fault detection of cracks 
in turbine rotors. 
 
1. Introduction 
 
Nonlinear dynamical systems show a variety of phenomena which are unknown in 
linear control systems. Different solution behavior depending on the initial conditions, 
the existence of limit cycles or strange attractors, the appearance of jumps of amplitude , 
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phase or frequency in case of self-excited or forced vibrations are some examples of 
these phenomena. The variety of nonlinear phenomena has generated a variety of 
different design methods for nonlinear control systems. Only recently the method of 
exact linearization and nonlinear system decoupling by state feedback becomes a 
unifying approach to nonlinear control design. But the method needs a big amount of 
calculations and, additionally, the smoothness requirements of the nonlinear functions 
under consideration 
 
Many technical applications do not satisfy these assumptions of the exact linearization 
method. Mechanical control systems show, for example, discontinuous nonlinear 
characteristics such as Coulomb friction, hysteresis, or backlash. Typically these effects 
appear in motor drive control or, more generally, in machine dynamics where the 
system behavior is predominantly governed by linear differential equations but 
superposed by additional nonlinear “dirty effects”. For the analysis and design of such 
systems usually the knowledge of the nonlinear characteristics is required. But often this 
knowledge is not available, especially if the characteristics change during operation. 
 
Therefore based on the method of disturbance observers a method has been developed 
to estimate the time behavior and/or the mathematical description of the nonlinear 
characteristics. Using these estimates of nonlinearities a feedback control can be 
designed counteracting the influence of the nonlinearities. The design is based on the 
theory of disturbance rejection. Therefore, by applying linear control theory nonlinear 
effects will be estimated and compensated leading to satisfactory closed-loop control 
systems. 
 
2. Problem Statement 
 
We are dealing with control problems which are described in the state space by 
 

( ) ( ) ( ( ), ) ( )t t t t t= + +x Ax Nf x Bu , (1) 
 

( ) ( )t t=y Cx  (2) 
 
where x , u , y  denote the n-dimensional state vector, the r-dimensional control vector 
and the m-dimensional measurement vector, respectively. The vector ( , )tf x  represents 
p more or less unknown functions which are generally nonlinear but may be in special 
cases linear functions with unknown parameters or external disturbances depending 
only on time. The matrices �, N, �, C are of appropriate dimensions representing the 
system matrix, nonlinearity, control input matrix, and the measurement matrix, 
respectively. To avoid redundant formulations the conditions  
 
rank p=N , rank r=B , rank m=C  (3) 
 
are assumed to be satisfied. 
 
The first aim will be the construction of an estimate ˆ ˆ( ( ), )t tf x  of the unknown, nonlinear 
effects. The second, the control aim, consists in the design of a suitable dynamic output 
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feedback such that the closed-loop control system is asymptotically stable and the q-
dimensional error vector 
 

( ) ( ) ( )t t t= +z Fx Gu  (4) 
 
is controlled independent of the influence of ( , )tf x : 
 

( ) 0 for 0z t t→ → . (5) 
 
The control design task is solved in two steps. Firstly an estimate ˆ ˆ( ( ), )t tf x  will be 
constructed independent of the feedback control. Secondly, a dynamic output feedback 
will be designed assuring asymptotic stability as well as the compensation of the 
nonlinearities in the error vector such that (5) holds. 
 
3. Theory 
 
3.1. Estimation of Nonlinearities 
 
The fundamental idea for the estimation ˆ( )tf  of ( ( ), )t tf x  consists in the approximation 
of its time behavior by some base functions which are solutions of a fictitious linear 
dynamical system: 
 

( ( ), ) ( )t t t≈f x Hv , (6) 
 

( ) ( )t t=v Vv . (7) 
 
The system (7) has to be selected suitably with respect to its dimension s as well as to its 
system matrix V. Later it will be shown that often the choice =V 0  is satisfactory. This 
approximate model (6)-(7) is only used for the design of the linear observer (8); it is not 
expected to describe the (nonlinear) perturbations exactly by (6)-(7). 
 
Substituting for the nonlinearities of (1) by the model (6)-(7) an extended linear system 
is obtained for which a state observer can be designed. In the case of an identity 
observer the estimation system happens to be as follows: 
 

( )
ˆ ˆ ˆ

ˆ
ˆ ˆˆ

⎡ ⎤ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + + − = + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

x x x

v v v

L A L C NH Lx A NH x B x B
u y y u y

L L C V L0 V v 0 v 0v
 (8) 

 
The choice of the observer gain matrices L , Lx v  can be realized such that the observer 
(8) is asymptotically stable if the extended system is detectable. Moreover, arbitrary 
eigenvalues can be realized if the extended system is completely observable: 
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rank
n

s n s
λ

λ
− −⎡ ⎤

⎢ ⎥− = +⎢ ⎥
⎢ ⎥⎣ ⎦

I A NH
0 I V
C 0

 for all Cλ ∈ . (9) 

 
With the estimated signals of (8) the nonlinearities can be reconstructed. Their time 
behavior is estimated by 
 
ˆ ˆ( ) ( )t t=f Hv . (10) 
 
3.1.1. Comments on The Observability Condition 
 
The observability condition (9) includes complete observability of the linear part of the 
original system (1)-(2), complete observability of the fictitious model (6)-(7) where (6) 
is considered as an output equation for system (7), and the complete transfer behavior of 
the modes of (7) to the measurement (2). The last property can be generally assured 
independent of the choice of the fictitious model if there are no transfer zeros from the 
nonlinearity input variables to the output variables: 
 

rank n n p
λ −⎡ ⎤

= +⎢ ⎥
⎣ ⎦

I A N
C 0

 for all Cλ ∈ . (11) 

 
Additionally, by (11) it is shown that the number of measurements must be at least 
equal to the number of nonlinearity inputs: 
 
m p≥ .  (12) 
 
3.1.2. Choice of Fictitious Model 
 
The signals of the fictitious model (6)-(7) should approximate the time behavior of the 
nonlinearities as closely as possible. A suitable choice of the matrices H, V requires 
usually a good à priori knowledge of the system behavior. However, in many 
applications a simple consideration is more efficient.  
 
Consider the true time behavior of the nonlinearities to be approximated by step 
functions; then we have an approximation by piecewise constant basis functions, i.e. 

=V 0  piecewise. If the observer (8) is fast enough it will follow the changes of the step 
function. Therefore, often the choice of the fictitious model can be simply realized by p 
integrators: 
 
s p= , p=H I , =V 0 . (13) 
 
3.1.3. PI-observer 
 
The choice of the fictitious model (6)-(7) according to the proposal (13) leads to a PI-
observer, i.e. an observer which feeds back the measurement error as a proportional and 
integral combination. The observer (8) yields  
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( )ˆ ˆ dt= − −∫vv L y y , (14) 

 
( ) ( )ˆ ˆ ˆ dt= + + − + −∫x vx Ax Bu L y y NL y y  (15) 

 
where ˆ ˆ=y Cx  is the estimated measurement and ˆ−y y  is the measurement error. The 
estimated nonlinearities are given by 
 
ˆ ˆ( ) ( )t t=f v . (16) 
 
The PI-observer has been shown in many applications as a very efficient estimator of 
the unknown effects. For a constant disturbance 0( ) const.t ≡ =f f  the PI-observer 
ensures steady-state accuracy. 
 
3.2. Convergence and Estimation Errors 
 
In this section the convergence of the estimate (10) to the true behavior is discussed, i.e., 
it is checked if the nonlinear perturbation is asymptotically estimated by the linear 
observer (8): 
 
ˆ ( ( ), )t t→f f x . (17) 
 
To simplify the notation we confine ourselves to the integrator model (13). Defining the 
estimation errors ˆ= −xe x x , ˆ= −fe v f  then the error equations of the observer (8) are 
given by  
 

b

( ) ( )
( ) ( )
t t
t t

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦
x x

f f

e e 0
A

e e f
 (18) 

 
where the observer system matrix bA is 
 

[ ]b
⎡ ⎤

= − ⎢ ⎥
⎣ ⎦

x
e

v

L
A A C 0

L
, e

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A N
A

0 0
 (19) 

 
and the time derivative 
 

( )T( ) ( ( ), )dt t t
dt t

∂ ∂
= = + + +

∂ ∂
f ff f x Ax Nf Bu

x
 (20) 

 
can be given by (7) if ( , )tf x  is differentiable one time at least. 
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