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Summary 
 
The gain-scheduling approach is perhaps one of the most popular nonlinear control 
design approaches which has been widely and successfully applied in fields ranging 
from aerospace to process control.  While much of the classical gain-scheduling theory 
originates from the 1960s, there has recently been a considerable increase in interest in 
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gain-scheduling in the literature with many new results obtained.  This chapter discusses 
the main theoretical results and design procedures relating to continuous gain-
scheduling (in the sense of decomposition of nonlinear design into linear sub-problems) 
control. 
 
1. Introduction 
 
Gain-scheduling is perhaps one of the most popular approaches to nonlinear control 
design and has been widely and successfully applied in fields ranging from aerospace to 
process control.  In recent years, there has been a marked resurgence of interest in gain-
scheduling methods within the research community with many fundamental 
developments in gain-scheduling theory. Although a wide variety of control methods 
are often described as “gain-scheduling” approaches, these are usually linked by a 
divide-and-conquer type of design procedure whereby the nonlinear control design task 
is decomposed into a number of linear sub-problems.   
 
This divide-and-conquer approach is the source of much of the popularity of gain-
scheduling methods since it enables well established linear design methods to be applied 
to nonlinear problems.  (While the analysis and design of nonlinear systems remains 
relatively difficult, techniques for the analysis and design of linear time-invariant 
systems are rather better developed Stability Concepts, Stability Theory , Control of 
Linear Multivariable Systems, Robust Control).   However, it is also emphasized that 
the benefits of continuity with linear methods often extend beyond purely technical 
considerations; for example, safety certification requirements are often based on linear 
methods and the development of new certification procedures using nonlinear 
approaches may well be prohibitive.   
 
Of course, the question must be asked as to whether the basic premise of such design 
approaches is in fact reasonable; that is, whether a wide class of nonlinear design tasks 
can genuinely be decomposed into linear sub-problems.  While few results are available 
which relate directly to this fundamental issue, and it is well known that certain classes 
of problem present greater difficulty than others for gain-scheduling methods, the 
general usefulness of such methods is nevertheless well established both in practice and 
from a theoretical viewpoint.  
 
The chapter is organized as follows.  The theoretical results relating the dynamic 
characteristics of a nonlinear system to those of a family of linear systems are reviewed 
in Section 2.  The classical gain-scheduling design procedure is discussed in Section 3 
followed by a number of recent divide-and-conquer approaches which attempt to 
address a number of deficiencies of classical methods. LPV gain-scheduling 
approaches, which have recently been the subject of considerable research activity but 
are less strongly based on divide-and-conquer ideas, are reviewed in Section 4 and the 
outlook is briefly discussed in Section 5.  The notation used is standard. 
 
2. Linearization theory 
 
Gain-scheduling design typically employs a divide-and-conquer approach whereby the 
nonlinear design task is decomposed into a number of linear sub-tasks.  Such a 
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decomposition depends on establishing a relationship between a nonlinear system and a 
family of linear systems.   The main theoretical results which, for a broad class of 
nonlinear systems, relate the dynamic characteristics of a member of the class to those 
of an associated family of linear systems are reviewed in this section.   
 
These results fall into two main sub-classes:  first, stability results which establish a 
relationship between the stability of a nonlinear system and the stability of an associated 
linear system and  second,  approximation results which establish a direct relationship 
between the solution to a nonlinear system and the solution to associated linear systems.   
It is important to distinguish between these classes of result.    
 
The former are typically much more limited than the latter, being confined to specifying 
conditions under which boundedness of the solution to a particular linear system implies 
boundedness of the solution to the nonlinear system for an appropriate class of inputs 
and initial conditions.   Notice that under such conditions the solutions are bounded but 
may otherwise be quite dissimilar.  Reflecting this distinction, the discussion in the 
following sections often separately considers results relating both to stability and 
approximation.   
 
The section is organized as follows.  Perhaps the most widespread approach for 
associating a linear system with a nonlinear one, namely series expansion linearization 
theory, is first reviewed The series expansion linearization is only valid in the vicinity 
of a specific trajectory or equilibrium point, and so there is considerable incentive to 
develop techniques which relax this restriction.  Approaches which aim to increase the 
allowable operating envelope by utilizing a family of linearizations (rather than just a 
single linearization) are reviewed in Sections 2.2-2.3.   
 
2.1. Series Expansion Linearization about a Single Trajectory or Equilibrium 
Point 
 
Consider the nonlinear system, 
 
 x = F(x, r),    y = G(x, r)  (1) 
 
where mr R∈ py R∈ nx R∈ .  Let ( ( ),   ( ),   ( ))t t tx r y denote a specific trajectory of the 
nonlinear system (the trajectory could simply be an equilibrium operating point in 
which case x  is constant).  Neglecting higher-order terms, it follows from series 
expansion theory that the nonlinear system, (1), may be approximated, locally to the 
trajectory, ( ( ),   ( ),   ( ))t t tx r y  , by the linear time-varying system 
 

ˆ ˆ( , ) ( , )δ δ δ= ∇ +∇x rx F x r x F x r r  (2) 
 

ˆ ˆ( , ) ( , )δ δ δ= ∇ +∇x ry G x r x G x r r  (3) 
 
where 
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, ,δ δ δ=r = r - r y y + y x = x - x  (4) 
 
The nonlinear system, (1), is stable relative to the trajectory ( ( ),   ( ),   ( ))t t tx r y provided 
the linear time-varying dynamics (2)-(3) are robustly stable with respect to the 
approximation error involved in truncating the series expansion.  In fact, is turns out that 
nonlinear system, (1), is locally BIBO stable if and only if the linear system (2)-(3) is 
exponentially stable when δr is zero (i.e. the unforced case) - see Lyapunov Stability. 
 
In the special case when the system, (2)-(3), is linear time-invariant, simple necessary 
and sufficient conditions for its stability are well-known (see Stability Concepts, 
Stability Theory , ).  However, in the time-varying case (see also Design Techniques for 
Time-Varying Systems), the stability analysis is, in general, not so straightforward.  In 
the context of gain-scheduling, frozen-time theory is widely employed to establish 
stability conditions for linear time-varying systems.   
 
Specifically, it can be shown that the stability of the linear time-varying system, (2)-(3), 
is guaranteed provided that the time variation of ( , )∇xF x r is sufficiently slow in some 

appropriate sense (for example, that ( )sup | ( , )
t 0

d/dt |xF x r
≥

∇  is sufficiently small).  

Although classical frozen-time results mainly relate to nominal stability, it can also be 
shown that, provided the rate of variation is sufficiently slow, the linear time-varying 
system (2)-(3) inherits the worst-case stability robustness of the family of frozen-time 
linear time-invariant systems ˆ ˆτδ δ=x A x  where τA denotes the value of ( , )∇xF x r at 
timeτ .    
 
Frozen-time theory is generally conservative in that it only establishes sufficient 
conditions for stability.  In addition, it is important to note that in all of the frozen-time 
robustness results an increase in robustness requires a decrease in the allowable rate of 
variation and that the linear time-varying system fully inherits the robustness of the 
frozen-time family only as the allowable rate of variation becomes arbitrarily small.    
 
The foregoing results relate to stability properties only.  Were the linear dynamics, (2)-
(3), an accurate approximation to the nonlinear dynamics, (1), then it might be expected 
that, when starting from the same initial conditions, the solutions of (1) and (2)-(3) 
remain correlated for some time.   
 
However, the solution to (2)-(3) is, in fact, only a zeroeth order approximation to the 
solution to (1).  This poor approximation property is inevitably reflected in the 
weakness of any approximation result.  Available results are essentially confined to a 
restatement of bounded-input bounded-output (BIBO) stability; that is, the solutions of 
(1) and (2)-(3) both remain within a bounded region enclosing the origin provided the 
input and the initial conditions are sufficiently small.   
 
2.2. Series expansion linearization families 
 
The foregoing results are confined to the dynamic behavior locally to a single trajectory 
or equilibrium operating point.  This is a significant limitation of the series expansion 
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linearization theory particularly since the local neighborhood within which the analysis 
is valid may, in general, be very small.  Within a gain-scheduling context, it is almost 
always required to consider the behavior of a system relative to a family of operating 
points, which spans the envelope of operation, rather than relative to a single operating 
point.  In order to increase the size of the operating region within which a series 
expansion linearization is valid, it is therefore natural to consider combining, in some 
sense, the series expansion linearizations associated with a number of equilibrium 
points.   
 
At this point it is perhaps worth emphasizing the clear distinction which exists between 
a single dynamic system and a family of dynamic systems, regardless of any superficial 
similarity between the two.  The linear time-varying system (2)-(3),for example, is a 
quite different object (being a distinct dynamic system) from the associated family of 
frozen linear time-invariant systems (being a collection of dynamic systems).  The 
importance of this distinction becomes particularly great when the state, input and/or 
output of the members of the family differ from one another as is the case when 
considering the family of series expansion linearizations of (1) relative to the 
equilibrium points.  
 
 The state, input and output of each series expansion linearization are perturbation 
quantities which depend on the equilibrium point considered.  The relationship between 
the solution to a nonlinear system and the solutions to its series expansion linearizations 
is thus not straightforward when the system is not confined to the vicinity of a single 
equilibrium point.  Nevertheless, it is possible to establish a weaker relationship.  
Namely, a relationship between the local stability of a nonlinear system and the stability 
of the associated series expansion equilibrium linearizations.   
 
The relevant theory stems primarily from an early lemma by Hoppensteadt from 1966, 
originally derived in the context of singular perturbation theory.  Using this so-called 
frozen-input theory, it can be shown that the nonlinear system, (1), is locally BIBO 
stable in the vicinity of equilibrium operation provided that the members of its family of 
equilibrium linearizations are uniformly stable and the rate of variation is sufficiently 
slow.  In addition, a trivial extension of this result is that, provided that the rate of 
variation is sufficiently slow, the nonlinear system also inherits the stability robustness 
of the equilibrium linearizations to smooth, finite dimensional, nonlinear perturbations 
(although there is the usual trade-off between robustness and the restrictiveness of the 
slow variation condition required).   
 
The slow variation condition in these results generally takes the form of a restriction 
both on the initial conditions of the system and on the rate of variation of the forcing 
input.  This slow variation condition plays two roles: firstly, it ensures that the system 
stays sufficiently near to equilibrium operation (necessary owing to the use of 
equilibrium linearizations) and secondly, it ensures that the system evolves sufficiently 
slowly from the vicinity of one equilibrium point to the vicinity of another.  It is 
emphasized that the analysis is inherently confined to a small neighborhood enclosing 
the equilibrium operating points and consequently may be extremely conservative.  
Such a restriction is, of course, to be expected since the analysis is based on the 
properties of the series expansion linearizations of the nonlinear plant relative to the 
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equilibrium points and so only utilizes information regarding the dynamics at 
equilibrium.  It is also worth noting that it is often difficult to test whether the stability 
conditions obtained are satisfied since they typically involve quantities which are 
difficult to evaluate.   
 
Indeed, perhaps owing to this difficulty, although frozen-input results are widely 
invoked in the literature to justify control designs it is quite rare for the theoretical slow 
variation conditions applying in a particular application to be actually determined.  An 
additional technical requirement in frozen-input stability analysis is that the equilibrium 
operating points are smoothly parameterized by the system input, r.  This requirement is 
not unduly restrictive in an analysis context but may be undesirable in the gain-
scheduling design context, where it is more natural to parameterize the equilibrium 
operating points by the scheduling variable.   
 
2.3. Off-equilibrium linearizations 
 
Classical series expansion theory associates a linear time-invariant system only with 
equilibrium operating points.  Consequently, any analysis/design based on this theory is 
generally only valid during near equilibrium operation.  This limitation arises due to the 
characteristics of classical series expansions but may be resolved by, instead, 
considering an alternative linearization framework.   
 
Before proceeding, in order to streamline the later discussion it is useful to explicitly 
highlight the linear and nonlinear dependencies of the dynamics by reformulating the 
nonlinear system (1) as 
 
    ,   = +x Ax + Br f(ρ)  y = Cx + Dr + g(ρ)  (5) 
 
where A, B, C, D are appropriately dimensioned constant matrices, ( )•f and ( )•g  are 
nonlinear functions and  ρ(x,r) embodies the nonlinear dependence of the dynamics on 
the state and input with ∇xρ , ∇rρ constant.  Trivially, this reformulation can always be 
achieved by letting

T T T = [   ]ρ x r .  However, the nonlinearity of the system is frequently 
dependent on only a subset of the states and inputs, in which case the dimension of ρ  is 
reduced.  The formulation, (5), defines a scheduling variable ρ  which explicitly 
embodies the nonlinear dependence of the dynamics.   
 
The solution to the velocity-based linearization 
 
ˆ ˆx = w  (6) 
 

1 1ˆ ˆ( ( )) ( ( ))= ∇ + +∇f fw A ρ w B ρ r  (7) 
 

1 1ˆ ˆ∇ ∇g g  y = (C + ( ρ ))w  + (D + ( ρ ))r  (8) 
 
approximates the solution to the nonlinear system, (5) (and so (1)), to second-order 
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locally to an operating point 1 1( , ) x r at which 1 1 1( , ) =ρ ρ x r .  It is emphasized that 

1 1( , ) x r  may be a general operating point (it need not be an equilibrium point and, 
indeed, may lie far from any equilibria).   While the solution to the velocity-based 
linearization is only a local approximation, there is a velocity-based linearization 
associated with every operating point of a nonlinear system and the solutions to these 
linearizations may be pieced together to globally approximate the solution to the 
nonlinear system, (5), to an arbitrary degree of accuracy.   
 
Hence, the velocity-based linearization family embodies the entire dynamics of a 
nonlinear system, with no loss of information, and is, in fact, an alternative 
representation of the nonlinear system.  The velocity-based linearization family is 
parameterized by the scheduling variable, ρ , and in this sense ρ  captures the nonlinear 
structure of a system.  The relationship between the nonlinear system, (5), and its 
velocity-based linearization, (6)-(8), is direct.  Differentiating (5), an alternative 
representation of the nonlinear system is 
 
x = w  (9) 
 

( (+∇ + +∇f fw = A (ρ))w B (ρ))r  (10) 
 

( (+∇ + +∇g gy = C (ρ))w D (ρ))r  (11) 
 
Evidently, the velocity-based linearization, (6)-(8), is simply the frozen form of (9)-(11) 
at the operating point, 1 1( , ) x r .    
 
The relationship between the solution to a nonlinear system and the solutions to the 
members of the associated velocity-based linearization family can be used to derive 
conditions relating the stability of a nonlinear system to the stability of its velocity-
based linearizations.   
 
General stability analysis methods such as small gain theory (see Input-Output Stability) 
and Lyapunov theory (see Lyapunov Stability) can be applied to derive velocity-based 
stability conditions (including the methods in Section 4 below).  In addition, by 
adopting the velocity-based framework, it is possible to extend and strengthen the 
classical frozen-input stability results discussed in Section 2.2.  Specifically, BIBO 
stability of the nonlinear system (1) is guaranteed provided the members of its velocity-
based linearization family are uniformly stable, unboundedness of the state x implies 
that w is unbounded (assuming the input r is bounded) and the class of inputs and 
initial conditions is restricted to limit the rate of evolution of the nonlinear system to be 
sufficiently slow.   
 
In addition, provided that the rate of evolution is sufficiently slow, the nonlinear system 
inherits the stability robustness of the members of the velocity-based linearization 
family (with the usual trade-off between robustness and the restrictiveness of the slow 
variation condition required)..  This velocity-based result involves no restriction to near 
equilibrium operation other than that implicit in the slow variation requirement; for 
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example, for some systems where the slow variation condition is automatically satisfied 
the class of allowable inputs and initial conditions is unrestricted and the stability 
analysis is global.   
 
3. Divide & Conquer Gain-Scheduling Design 
 
Gain-scheduling design approaches conventionally construct a nonlinear controller, with 
certain required dynamic properties, by combining, in some sense, the members of an 
appropriate family of linear time-invariant controllers.  Design approaches may be 
broadly classified according to the linear family utilized.  Classical gain-scheduling 
design approaches, based on the series expansion linearization of a system about its 
equilibrium points, are discussed in Section 3.1.  Recent, and closely related, approaches 
based on neural/fuzzy modeling and off-equilibrium linearizations are considered, 
respectively, in Sections 3.2 and 3.3. 
 
- 
- 
- 
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