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Summary 
 
This chapter presents some basic concepts for the modeling of lumped-parameter 
mechatronic systems. Thereby, we think of mechatronics to be the result of a synergetic 
integration of mechanical engineering with electronics, information and control theory. 
Thus, by modeling we not only mean the process of setting up the equations for 
simulation purposes but also the process of revealing the structural aspects of the system, 
which, in a further step can be exploited for analyzing the system and for designing a 
controller. It turns out that this kind of modeling is of particular interest for the design of 
mechatronic systems where the nonlinear behavior cannot be neglected. We will consider 
a mechatronic system to be an interconnection of various subsystems and/or system 
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elements in a network-like structure. Clearly, the subsystems (system elements) may stem 
from different physical domains. Within the modeling process we have to distinguish 
between the constitutive relations of the system elements and the interconnectivity 
constraints which depend on the way these system elements are joined together in a 
network structure, also referred to as the topological relationship. Thereby, the 
multidisciplinary nature of mechatronic systems requires a mathematical formulation of 
the models that is independent of the physical domain. Furthermore, the theory as being 
established must not rely on the specific choice of a coordinate system. Therefore, we 
choose a mathematical formulation, which, at least at an introductory level, provides the 
basis for a coordinate-free (differential-geometric) description of mechatronic systems.  
 
In this chapter, we will focus on an energy-based approach where the subsystems (system 
elements) are connected through so-called energy ports and where the various system 
elements, i.e. energy storage elements, coupling elements and static elements, are 
classified in terms of the energy flows via their ports. Since the network theory has its 
historical roots in electrical engineering, we will explain the topological relationships of 
so-called Kirchhoff networks considering electrical networks, although they also apply to 
more general physical networks. Thereby, the famous theorem of Tellegen proves to be 
one of the key-concepts in formalizing the power-conserving interconnection of 
network-type models. In this context the so-called port-Hamiltonian formulation provides 
a theoretical framework for a systematic energy-based description of mechatronic 
systems. Throughout the whole chapter we will apply the theory as presented to different 
examples from the electrical, mechanical and fluidic domain. 
 
1. Introduction 
 
The word mechatronics was created by a Japanese engineer in 1969 to describe systems 
which combine mechanisms with electronics. Since then the meaning of mechatronics 
has been gradually extended and by now mechatronics is much more than just the 
systemic combination of mechanisms and electronics. Mechatronics stands for the 
philosophy of the synergetic integration of mechanical engineering with electronics, 
information and control theory. In this sense mechatronics turns out to be a new paradigm 
for the development and design of intelligent products and new manufacturing processes.  
 
The modeling of mechatronic systems plays an important role in the development process 
of a mechatronic product. Generally, a model is required for simulation purposes, for 
analyzing the system and for designing a controller. It is well known that it is rather 
difficult to set up a model that is appropriate to satisfy all these different demands at the 
same time. In addition, the multidisciplinary nature of mechatronics brings about that the 
modeling and control of mechatronic systems require the knowledge of different 
engineering disciplines. This is why in the last years much effort was put on the 
development of a unified framework for the modeling and control of (nonlinear) 
multi-domain physical systems. However, the first works on this field go back to the 
1950s and 1960s, where on the one hand the powerful methods of network-based 
modeling of electrical circuits were extended to other physical domains (mechanical, 
fluidic, thermal, etc.) and, on the other hand the well established variational methods from 
mechanics, like the Lagrangian and Hamiltonian formulation, were generalized to 
nonlinear electrical networks. Basically all the current modeling approaches for 
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mechatronic systems are based on a network representation of interconnected subsystems 
(system elements) which may stem from different physical domains. Due to the inherent 
modularity of this concept the models can be easily organized in an object-oriented 
environment. Furthermore, this modeling approach supports all kinds of top-down and 
bottom-up design strategies.  
 
It is well known that the topological relationship of a network structure can be efficiently 
described by means of graph theory. In general, the way how the various subsystems 
(system elements) are interconnected plays a central role within the modeling process. 
The traditional block-diagram oriented approach, where different blocks are connected 
via arrows, automatically implies certain (computational) causality assumptions on how 
information is exchanged between the blocks.  
 
Thereby, the signal associated to the arrow is set as the output of one block and serves as 
the input of another block. In other words, the signal associated to the arrow is an effect of 
the block where it comes from and a cause for the block where it is supplied to. If we 
think of the constitutive law of a linear electrical resistor, it is not clear from the start 
whether the current is the input and the voltage the output or vice versa.  
 
Thus, in block-diagrams causality assumptions have to be made at the system element 
level rather than the overall system level and this limits the reusability of the system 
element models and the possibility of making configuration changes to these models. A 
suitable concept which can be used to handle these problems is based on an 
interconnection of subsystems (system elements) via so-called energy ports. The 
subsystem can be thought of as operating on a pair of variables, the so-called power 
variables, whose product is power and the interconnections, the energy ports, are places 
where power can flow from one subsystem (system element) to another.  
 
A graphical language which optimally supports this kind of physical modeling is given by 
the so-called bond-graphs (see Modeling and Simulation of Dynamic Systems Using 
Bond Graphs). Apart from the bond-graph approach different textual description 
languages are available for a unified object-oriented modeling of complex physical 
systems, like Modelica or VHDL-AMS to mention only two important representatives. It 
is not the intention of this chapter to discuss the terminologies and the concepts of the 
different modeling languages of mechatronic systems.  
 
In fact, we will rather focus on elaborating some essential principles, which, among 
others, form the theoretical basis for a systematic modeling of mechatronic systems 
within a (coordinate-free) mathematical framework which allows us to create a link to 
results in modern nonlinear control theory. For the sake of clarity we will restrict our 
investigations to lumped-parameter systems. However, most of the concepts being 
presented can be extended to the infinite-dimensional case, although their exact 
mathematical formulation requires many additional technicalities.  
 
2. System Variables and System Elements 
 
Let us consider a mechatronic system composed of different subsystems (system 
elements) which are interconnected via so-called energy ports, see Figure 1. 
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Figure 1. Interconnection of subsystems via energy ports. 
 
An energy port can be represented by a pair of terminals together with a pair of power 
variables, the efforts (or across variables) e  and the flows (or through variables) f , 
which describe the energy transfer via the interconnection. Geometrically, the flow 
variables f  are coordinates of a linear vector space V  and the effort variables e  are 

coordinates of the dual vector space ∗V  such that the linear map e  acting on f , denoted 
by the duality product e f, , gives the power P  flowing via the port from one to the 
other subsystem.  
 
Subsequently, a component of an effort variable will always have a lower index and a 
component of a flow variable an upper index, respectively. For simplifying the notation, 
we will arrange both the efforts e  and the flows f  in the same way as column vectors 

and we will write the duality product in the form T j
jjP e f e f= =∑ . But bear in mind 

that in general the distinction between elements of V  and ∗V  is essential, since they 
transform differently under coordinate changes. The currents and voltages in the 
electrical domain, the velocities and forces (angular velocities and torques) in the pure 
translational (rotational) mechanical domain as well as the mass flow and the enthalpy for 
fluidic systems in case of isentropic storage processes serve as appropriate power 
variables.  
 
2.1. Energy Storage Elements 
 
Next, we will classify energy storage elements like inductors, masses, pressurized fluid 
tanks etc. For this, consider an ideal energy storage element with an energy port and 
associated power variables e  and f  as shown in Figure 2.  
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Figure 2: Ideal energy storage element. 
 
Let ( )P τ  denote the instantaneous power associated to the port at the time τ . Then the 

energy transferred over the port in the time interval [ ]0 t,  is given by  
 

( )
0

d d
t TE P e f

γ
τ τ τ= = ,∫ ∫  (1) 

 
with γ  as a solution curve (the power variables as functions of time) of the system in the 
time interval [ ]0 t, . Clearly, if the energy storage element is ideal, the change of the 
energy stored in the element is solely determined by the energy transferred over the port. 
However, we will distinguish between two fundamental mechanisms for the storage of 
energy, namely the p - and the q -type storage elements. For this purpose we introduce 
two new variables p  and q , the so-called energy variables, given by  
 

( ) ( ) ( )
0

d0 d or
d

t
p t p e p e

t
τ τ= + =∫  (2) 

 
and 
 

( ) ( ) ( )
0

d0 d or
d

t
q t q f q f

t
τ τ= + = .∫  (3) 

 
In the literature the vector p  is often referred to as the generalized momentum vector and 
q  as the generalized displacement vector. The reason for the choice of these names will 
become clear later in this section. From (2) and (3) it can be seen that the energy variables 
p  and q  are just state variables of a simple dynamical system (integrator) with inputs e  

and f . Sometimes p  and q  are also referred to as effort accumulation and flow 
accumulation variables. As it is the case for state variables, if we know the values of 
( )p t  and ( )q t  at any given time 0t t= , then, given knowledge of the inputs ( )e t  and 

( )f t  for 0t t≥ , we can calculate all present and future values. Thus, the state variables 
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contain the necessary information about the history of the energy flow.  
 
2.1.1. Generalized Kinetic Energy 
 
Substituting (2) into (1), we get  
 

dj j
j

E f p
γ

= .∑∫          (4) 

 
For this special type of storage device we have to define a constitutive relationship of the 
form  
 

( )ff pϕ= .           (5) 
 
Let us assume for the following that the jp ’s are linearly independent. Then the integral 

of (4) is path independent iff the 1-form dj jj f p∑  is exact, or if in a star-shaped region 

(due to Poincaré’s lemma for differential forms) the 1-form is closed, i.e.,  
 

( ) ( ) ( )d d 0 or equivalently for allj j k
j ff f

k jj
p p p p j k

p p
ϕ ϕ ϕ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∂ ∂
= = ≠ .

∂ ∂∑  (6) 

 
In the literature the conditions (6) are also sometimes called integrability conditions or 
Maxwell’s reciprocity conditions. If (6) holds then the stored energy is solely a function 
of p , given by the expression  
 

( ) ( )d .
p j

jf
j

T p p pϕ= ∑∫         (7) 

 
Note that the lower limit of integration for the energy function need not be specified. But 
in general, it is assumed that the energy is zero at the origin. We will call ( )T p  a 
generalized kinetic energy. See the mechanical example below for an explanation of this 
choice of notation. Since T  is a function of the energy variable p , this type of storage 
element is also known as a p -type storage element or in bond-graph notation an I-field. It 
can be immediately seen from (7) and (5) that the flow f  can be calculated by means of 
the generalized kinetic energy in the form 
 

( ) ( )jj
f

j
f p T p

p
ϕ ∂

= = .
∂

        (8) 

 
Following the considerations of Appendix A, we can describe the system in a contact 
bundle with coordinates ( )p T f, ,  and a contact ideal generated by the contact 1-form  
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1 d dj j
j

T f pω = − .∑  (9) 

 
The Legendre transformation (see Appendix A) to a contact bundle, with new 

coordinates ( ) ( )j
jjp T f f f p T p, , = , − ,∑  and a contact ideal generated by the 1-form  

 

2 d d j
j

j
T p fω = − ,∑  (10) 

 
leads to the so-called generalized kinetic co-energy function  
 

( )( )1( ) d ,
f j

f jj
T f f fϕ−= ∑∫  (11) 

 
provided that the function ( )f pϕ  in (5) is invertible. Note that this is certainly the case if 

( )T p  is strictly convex.   
 

 
 

Figure 3. Graphic illustration of the kinetic energy and co-energy function for a one-port 
p -type storage element. 

 

Furthermore, condition (6) implies the relation ( )( )1d d 0j
f j

f fϕ
⎛ ⎞−⎜ ⎟
⎜ ⎟
⎝ ⎠

= , which ensures the 

path independence of the integral in (11). Analogous to (8) we can directly calculate p  
from the kinetic co-energy  
 

( )( ) ( )1
j f jj

p f T f
f

ϕ− ∂
= = .

∂
 (12) 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION -– Vol. IV - Some Basics in Modeling of Mechatronic Systems - Andreas 
Kugi  

©Encyclopedia of Life Support Systems (EOLSS) 

 

 
 

Figure 4: Causal representations of a p -type storage element. 
 
A graphic illustration of the kinetic energy and co-energy for a one-port p -type storage 
element with a nonlinear constitutive law (5) is depicted in Figure 3. Combining (2), (8) 
and (12) we have two causal representations of the p -type storage element depending on 
whether the effort e  is the input and the flow f  the output or vice versa. Figure 4 shows 
these representations in the form of two block-diagrams. In bond-graph terminology the 
representation on the left side of Figure 4 is called integral causality and the one on the 
right side derivative causality referring to the presence of an integrator and a derivative 
block element, respectively (see Modeling and Simulation of Dynamic Systems Using 
Bond Graphs for the different sorts of causality assignment in a bond-graph). In this 
context it is worth mentioning that the energy variable serves as a state variable and hence 
the energy is a function of the state whereas the co-energy is not. 
 
Mechanical Example – Single Translation Mass:  Consider a single translational mass 
m  with the velocity v  (flow f ) and the force ε  (effort e ) as the power variables. It is 
well known that the energy variable p  of (2) corresponds to the momentum p  because 
of the relation d

dt p ε= . The constitutive relationship (5) between the velocity v  and the 

momentum p  is given by 1v m p−= . Thus, the (generalized) kinetic energy due to (7) 
follows to 
 

1 1 21( ) d
2

p
T p m p p m p− −= =∫  (13) 

 
and the (generalized) kinetic co-energy takes the form, see (11), 
 

21( ) d .
2

v
T v mv v mv= =∫  (14) 

 
Note that the expression of (14) is usually referred to as the kinetic energy of the mass m . 
Properly spoken, it is a co-energy because it is a p -type storage element and thus is 
expressed as a function of the flow variable. This example should also clarify the names 
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generalized kinetic energy for ( )T p  and generalized momentum for the energy variable 
p .  

 
Electrical Example – Mutually Coupled Inductors:  Given an energy storage element 
consisting of n  mutually coupled inductors with associated power variables, current i =  

1 ni … i⎛ ⎞
⎜ ⎟
⎝ ⎠
, ,  (flow f ) and voltage ( )1 nu u … u= , ,  (effort e ), see Figure 5.   

 

 
 

Figure 5: Mutually coupled inductors as an energy storage element. 
 
The voltage u  is related to the flux linkage ( )1 n…ψ ψ ψ= , ,  by the differential equation 
d
dt uψ = . Hence the flux linkage ψ  corresponds to the energy variable (generalized 

momentum vector) p  of (2). With the constitutive relation ( )fi ϕ ψ=  due to (5) we can 
calculate the (generalized kinetic) energy and co-energy in the form 
 

( ) ( )( )1

1 1
( ) d and ( ) d .

n nij j
j ff jj j

T T i ı ı
ψ

ψ ϕ ψ ψ ϕ−

= =
= =∑ ∑∫ ∫  (15) 

 
The condition for the path-independence of (11) can be interpreted as the symmetry 
condition of the so-called incremental inductance matrix 

( ) ( ) ( )( )1 k
jk f j

L i L i i iϕ
⎡ ⎤−⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤= = ∂ /∂⎣ ⎦ . In the case when the matrix L  is constant the 

energy and co-energy functions of (15) simplify to  
 

( ) ( )11 1and
2 2

T TT L T i i Liψ ψ ψ−= = .  (16) 
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Note that in this context the demand on ( )T ψ  or ( )T i  to be strictly convex is equivalent 
to the demand on L  to be positive definite.  
 
- 
- 
- 
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