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Summary 
 
Distributed parameter systems are modeled by sets of partial differential equations, 
boundary conditions and initial conditions, which describe the evolution of the state 
variables in several independent coordinates, e.g. space and time. Most distributed 
parameter models are derived from first-principles, i.e. conservation of mass, energy and 
momentum. 
 
Whereas first-principles allow a model structure to be defined, some degrees of freedom 
are usually left for model parameterization, and a number of unknown parameters have to 
be estimated from experimental data by minimizing an output error criterion measuring 
the deviation between real system and model outputs. At this stage, experiment design, 
sensor configuration, and measurement errors are important issues, which have to be 
considered in order to ensure parameter identifiability. 
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In addition, model reduction techniques, based on simplifying assumptions regarding the 
problem physics, dimensionality and geometry, and based on various techniques 
including parameter sensitivity analysis and singular perturbations, are also very useful in 
deriving a model suitable for control, i.e. a model compromising complexity and 
efficiency in reproducing the major physical phenomena. 
 
Once a distributed parameter model has been obtained, a system simulator can be 
implemented. Due to the inherent complexity and nonlinearity of the model equations, an 
analytical solution is usually intractable, and it is necessary to resort to a numerical 
procedure. One of the most popular approaches is the numerical method of lines, which 
proceeds in two basic steps: (a) spatial approximation and (b) time integration. A vast 
array of numerical algorithms are available, either for spatial approximation, e.g. 
weighted residual, finite element, finite difference and finite volume methods, or for time 
integration, e.g. explicit and implicit solvers with variable steps, adjustable order of 
accuracy and sophisticated matrix algebra. 
 
These latter numerical approximation techniques can be exploited at two different stages 
for control purposes: (a) the early lumping approach, in which the distributed parameter 
model is first reduced to a lumped parameter system and conventional control schemes 
are then applied, and (b) the late lumping approach, in which the distributed nature of the 
system is kept along the control design procedure, and numerical approximation 
techniques are used at a final stage only, to approximate the resulting partial differential 
Eqs. (describing state estimation/control) for real-time implementation. 
 
1. Introduction 
 
Many systems from science and engineering are distributed parameter systems (DPSs), 
i.e. systems characterized by state variables (or dependent variables) in two or more 
coordinates (or independent variables). Time and space is the most frequent combination 
of independent variables, as is the case in the following examples: 
 

• time-varying temperature profiles in a heat exchanger, 
• time-varying concentration profiles in a sorptive packed column, 
• time-varying temperature and concentration profiles in a tubular reactor, 
• time-varying car density along a highway, 
• time-varying deflection profile of a beam subject to external forces, 
• time-varying shape and velocity of a water wave, 

 
but other combinations of independent variables are possible as well. For instance, time 
and individual size (or another characteristic such as age) occur in population models 
used in ecology, or to describe some important industrial processes such as 
polymerization, crystallization or material grinding. In these models, space can also be 
required to represent the distribution of individuals (of various sizes) in a spatial region or 
in a non homogeneous reactor medium (due to non ideal mixing conditions in a batch 
reactor, or to continuous operation in a tubular reactor). 
 
The preceding examples show that there exists a great variety of DPSs, arising from 
different areas of science and engineering, which are characterized by time-varying 
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distributions of dependent variables. In view of the system complexity, a mathematical 
model, i.e. a mathematical description of the physical (chemical, mechanical, electrical, 
etc.) phenomena taking place in the system, is often a prerequisite to system analysis and 
control. Such a model consists of partial differential Eqs. (PDEs), boundary conditions 
(BCs), and initial conditions (ICs) describing the evolution of the state variables. In 
addition, DP systems can interact with lumped parameter systems (LPSs), whose state 
variables are described by ordinary differential Eqs. (ODEs), and supplementary 
algebraic model equations can be used to express phenomena such as thermodynamic 
equilibria, heat and mass transfers and reaction kinetics.  
 
Hence, a DPS is usually described by a mixed set of nonlinear PDEs/ODEs/AEs or 
PDAEs. For control purposes, it is also required to select input and output variables, and 
to define the associated equations. Thereby, process disturbances are assumed to be 
known or to be modeled by additional equations. Most PDAE models are derived from 
first-principles, i.e. conservation of mass, energy and momentum, and are given in a state 
space representation which is the basis for system analysis and control. 
 
Whereas first-principles and physical laws allow a model structure to be defined, some 
degrees of freedom are available when selecting the model parameterization, and a 
number of unknown parameters have to be inferred from experimental data. This latter 
task can be achieved by minimizing an output error criterion measuring the deviation 
between real system and model outputs. At this stage, experiment design, sensor 
configuration, and measurement errors are important issues, which have to be considered 
in order to ensure parameter identifiability. 
 
In addition, model reduction techniques, based on simplifying assumptions regarding the 
problem physics, dimensionality and geometry, and based on various techniques 
including parameter sensitivity analysis and singular perturbations, are also very useful to 
derive a model suitable for model-based control, i.e. a model compromising complexity 
and efficiency in reproducing the major physical phenomena. 
 
Once a DP model has been obtained, the next natural step is the implementation of a 
system simulator. Due to the inherent complexity and nonlinearity of the PDAE model, 
an analytical solution is usually intractable, and it is necessary to resort to a numerical 
procedure. One of the most popular approaches is the numerical method of lines (MOL), 
which proceeds in two basic steps: 
 

• approximation of the spatial derivatives using finite differences, elements or 
volumes; 

• time integration of the resulting semi-discrete (discrete in space – continuous in 
time) system of equations, which takes the form of algebro-differential Eqs. 
(DAEs). 

 
The MOL has received considerable attention in the last decades and a vast array of 
numerical algorithms for spatial approximation and time integration are now available. 
 
The DP model, and associated simulator, can then be used to analyze the system 
dynamics and to design controllers. Due to the infinite order of DPSs, two main 
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approaches can be taken: 
 

• the early lumping approach, in which the model partial differential equations are 
approximated (lumped) first, and the control design proceeds with the lumped 
model equations. The approximation technique is usually selected with the 
concern of dimensionality, as control design requires manipulation of the model 
equations, and polynomial approximations, such as orthogonal collocation, have 
been central to numerous developments; 

• the late lumping approach, in which the distributed nature of the system is kept as 
long as possible in the course of the control design. In the end, computer 
implementation of the resulting control algorithms requires numerical 
approximation techniques. However, dimensionality is no longer critical, as no 
further analytical manipulation of the equations are required. Of course, accuracy 
and computational load are important issues. 

 
This chapter is all about the preceding ideas and attempts to present an informative 
overview of existing modeling and simulation techniques for DPSs. The text is organized 
as follows. 
 
Section 2 deals with modeling of DPSs. First, Section 2.1. introduces the PDE formalism 
and the methodology used to derive DP models. Several classifications of PDEs and BCs 
are presented in Section 2.2. The parameter estimation problem in DPSs is addressed in 
Section 2.3, and model simplification/reduction techniques are discussed in Section 2.4. 
 
After this introduction to DPS modeling, analytical and numerical solution procedures are 
presented in Section 3. Particularly, attention is focused on the method of separation of 
variables and eigenfunction expansions in Section 3.1. Then, Section 3.2. describes 
weighted residual methods, and Section 3.3. deals with spatial discretization, i.e. finite 
element, difference and volume methods. Some important aspects of time integration are 
addressed in Section 3.4, and finally, Section 3.5 discusses early and late lumping 
approaches to control design. 
 
2.  Modeling of Distributed Parameter Systems 
 
DPSs are described by nonlinear PDAEs, which are derived from first-principles, e.g. 
mass, energy and momentum balances. Even though the physical model formulation can 
involve higher-order time derivatives (e.g. the wave equation, which is used to describe 
the motion of a string, is second-order in time), it is straightforward to reformulate the 
equations in a state space representation (involving first-order time derivatives only) 
through a change of variables. This state space representation is the preferred form for 
analysis and control purposes, as well as for a numerical solution using the method of 
lines. In compact form, the coupled PDAEs read 
 
 ( , , ) ( , , , , , ,...)t z zzt t=M z x x f z x u x x  ∈Ωz  (1) 
 
 ( , , , , ,...)zt=0 g z x v x  ∈Γz  (2) 
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 0( 0, ) ( )t = =x z x z  ∈Ω∪Γz  (3) 
 
where Eq. (1) can, in general, include PDEs defined in the spatial domain Ω , as well as 
ODEs and AEs. In turn, the presence of algebraic relationships in (1) involves a singular 
mass matrix M  (i.e. M  has a null line corresponding to each algebraic state in the vector 
x ). The PDEs are supplemented by BCs (2) at the boundary surface Γ  and ICs (3) 
(which also include the ICs required for the model ODEs, if any). In these expressions, 

t t= ∂ ∂x x , and xz and xzz represent first- and second-order partial derivatives of the state 
( , )tx z  with respect to the spatial coordinate 1 2 3( , , )z z z=z . In (1), f is a vector of 

nonlinear functions of the state and several of its spatial derivatives as well as of the input 
( , )tu z  acting in the spatial domain Ω . At the boundary surface Γ , the balance equations 

reduce to algebraic BCs (2), which involve boundary inputs ( , )tv z . 
 
2.1. Model Derivation – Basic Principles 
 
The model equations are derived from application of first principles, i.e. conservation of 
mass, energy and momentum. If any of these quantities is denoted by x, the following 
general balance equation can be written 
 
 Accumulation of x  = flow of x in – flow of x out 
   + amount of x generated – amount of x consumed (4) 
 
To illustrate this general principle, a specific example is considered, namely the 
adsorption of a chemical component in a packed bed column (Fig. 1) 
 
An incompressible liquid phase containing a chemical component C enters into the 
column with a concentration ,in( , 0) ( )l lc t z c t= = . The fluid flows through the solid 
particles of the bed, where the chemical component C can be adsorbed or desorbed. It is 
assumed that there is no radial gradient of concentration, so that the two independent 
variables are the time t  and the spatial coordinate along the column z . The 
concentrations of C in the liquid phase ( , )lc t z  and in the solid phase ( , )c t zs  are the 
dependent variables (or state variables) of the system. The PDEs describing the 
space-time evolution of these state variables are obtained by expressing mass balances in 
the form of (4) for an elementary volume A zΔ of the column (see Fig. 1), i.e. 
 
 ( ) ads( , ) ( , ) ( , ) ( , )l l l lA z c t t z c t z A vc t z t A vc t z z t A z tε ε ε εΔ + Δ − = Δ − + Δ Δ − Δ Φ Δ  (5) 
 
 ( )s s ads(1 ) ( , ) ( , ) 0 0A z c t t z c t z A z tε ε− Δ + Δ − = − + Δ Φ Δ  (6) 
 
where A is the cross-section area of the column, ε  is the void fraction (porosity of the 
solid bed), v is the intersticial velocity of the fluid and adsΦ  is the adsorption flux, which 
can be expressed in several ways. Here, a linear driving force model is used 
 
 ads s( , ) ( ( , ) ( , ))t z k q t z c t zΦ = −  (7) 
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where ( , )q t z  is the equilibrium concentration of the adsorbed component at the solid 
interface, which can be described by various adsorption isotherms, e.g. a Freundlich 
isotherm in the form 
 
 ( , ) ( , )lq t z c t zβα=  (8) 
 
Dividing both sides of Eqs. (5-6) by t zΔ Δ , letting 0tΔ → , 0zΔ →  and rearranging the 
several terms lead to 
 

 ads
l lc cv
t z

∂ ∂
= − −Φ

∂ ∂
 (0, )z L∈  (9) 

 

 ads(1 )
sc
t

ε
ε

∂
= + Φ

∂ −
  (10) 

 
Equation (9) is a first-order PDE, which has to be supplemented by one BC at the column 
inlet 
 
 ,in( , 0) ( )l lc t z c t= =   (11) 
 
and one IC 
 
 ,0( 0, ) ( )l lc t z c z= =  [0, ]z L∈  (12) 
 

 
 

Figure 1. Adsorption of a chemical component in a packed bed column 
 
If dispersion in the particle bed is taken into account, then additional material 
transportation terms are added to the right-hand side of (5), i.e. 
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( , ) ( , )

l l

t z t z z

c cA D t A D t
z z

ε ε
+Δ

∂ ∂
− Δ + Δ

∂ ∂
 (13) 

 
where D is the axial dispersion coefficient. 
 
In this case, (9) becomes a second-order PDE 
 

 
2

ads2
l l lc c cv D
t z z

∂ ∂ ∂
= − + −Φ

∂ ∂ ∂
 (0, )z L∈  (14) 

 
which requires a second boundary condition, e.g. 

 
( , )

0l

t z L

c
z =

∂
=

∂
 (15) 

 
expressing that dispersion is negligible at the column outlet. 
 
On the other hand, the mass balance (10) for the solid phase is a PDE without spatial 
derivatives, as there is no solid movement. Hence, this equation just require an IC of the 
form 
 
 s s,0( 0, ) ( )c t z c z= =  [0, ]z L∈  (16) 
 
Note that, if the adsorption dynamics is very fast, a quasi steady-state assumption for the 
solid phase can be made, i.e. the concentration in the solid phase is at the equilibrium 
concentration 
 
 s ( , ) ( , )c t z q t z=  [0, ]z L∈  (17) 
 
In this latter case, PDE (14) (or 9) can be reformulated in a slightly different form 
 

 
2

2

1l s l lc c c cv D
t t z z

ε
ε

∂ ∂ ∂ ∂−
+ = − +

∂ ∂ ∂ ∂
 (0, )z L∈  (18) 

 
The model (8, 11-12, 15, 17-18) is a mixed PDE/AE system, which illustrates the concept 

of mass matrix in Eq. (1) (here the mass matrix 
1 (1 )
0 0

ε ε−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

M  for the vector of state 

variables 
s

lc
x

c
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

). Alternatively, (17) could be substituted into (18), thus reducing to a 

single PDE for ( , )lc t z . These several model forms correspond to different modeling 
assumptions (adsorption described by a linear driving force model or by an equilibrium 
model) and different levels of algebraic manipulation. 
 
Most mathematical models can be obtained following these lines of thoughts, expressing 
mass, energy and momentum balances, and using physical, chemical, mechanical, 
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electrical algebraic relationships or experimental correlations. Note, at this stage, that 
source terms like the adsorption kinetics (7, 8), can be very delicate to model in practice 
as they represent phenomena that are by far more complex than their usual mathematical 
representations let suppose (other examples of this inherent complexity can be found in 
biology, where extremely complex reaction pathways are represented by simple 
macroscopic reaction schemes and kinetics, e.g. Monod, Haldane, etc.). This observation 
has led to the development of hybrid physical-black box models, such as the hybrid 
first-principles-neural-network models recently proposed in the specialized literature. 
 
Modeling, however, remains much of an art, and besides the main guidelines given in this 
section, the experience and skills of the modeler play an important role. 
 
2.2. More PDEs – Classifications 
 
After having introduced the basic principles of DP modeling, the aim of this section is to 
review the main classes of PDEs and BCs, and to introduce various classifications. 
 
There are basically three mathematical features that allow PDEs to be classified: order, 
(non)linearity and geometric consideration (elliptic, parabolic and hyperbolic PDEs). 
 
2.2.1. PDE order 
 
The order of a PDE is the order of its highest derivative. For example, PDE (9) is 
first-order in time and first-order in space, whereas PDE (14) is second-order in space. 
The order of a PDE determines the number of ICs and BCs that are required to completely 
define the initial-boundary value problem (IBVP). PDE (9) requires one IC given by (12) 
and one BC given by (11), whereas PDE (14) requires two BCs given by (11) and (15). 
 
2.2.2. Linearity, Quasilinearity and Nonlinearity 
 
When the dependent variables and their derivatives appear in linear combinations, then 
the PDE model is linear. Linearity is an ideal characteristic, which is unfortunately 
seldom present in engineering processes. Whereas there exists a complete array of 
analytical methods for analysis and control of linear DPSs, there exists no such 
comprehensive theoretical treatment for nonlinear PDEs, and it is then necessary to resort 
to numerical techniques. A special class of nonlinear systems is sometimes distinguished, 
for which more theoretical results are available: the quasilinear PDEs in which the highest 
derivative appears in linear form (but not necessarily the lower-order terms). 
 
2.2.3. Elliptic, parabolic and hyperbolic PDEs 
 
This classification is based on the second-order quasilinear formulation  
 
 ( , ) 2 ( , ) ( , ) ( , , , , )a x b x c x f x x xηη ηξ ξξ η ξη ξ η ξ η ξ η ξ+ + =  (19) 
 
where η  and ξ  can be any of t, z1, z2, z3. 
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If 2 0b ac− < , the equation is elliptic, e.g. Poisson's equation 
2 2

1 22 2
1 2

( , )x x f z z
z z
∂ ∂

+ =
∂ ∂

. 

If 2 0b ac− = , the equation is parabolic, e.g. the heat Eq. (Fourier's equation) 
2

2

x x
t z

λ∂ ∂
=

∂ ∂
. 

If 2 0b ac− > , the equation is hyperbolic, e.g. the wave equation 
2 2

2
2 2

x xc
t z

∂ ∂
=

∂ ∂
. 

 
However, this latter classification is of little use in engineering practice, and another, 
more physical, classification can be more appealing. 
 
2.2.4. Convection - Diffusion (Dispersion) – Reaction PDEs 
 
First-order terms (involving zx ) are representative of convective transport, whereas 
second-order terms (involving zzx ) represent diffusion and/or dispersion phenomena. 
The distinction between these two transportation mechanisms is fundamental in system 
analysis (convection corresponds to the transport of information in a "plug flow" manner, 
whereas diffusion/dispersion has no preferential direction, and influences all the spatial 
domain at the same time) and in the selection of numerical algorithms for the 
approximation of spatial derivatives (approximation schemes have to take account of the 
nature/direction of the transport phenomena). Besides convective and diffusive terms, 
PDEs can include source terms (separate terms in the dependent and/or independent 
variables), which represent various internal phenomena such as reaction, adsorption (as in 
PDEs 9 and 14), grinding, etc. For simplicity, these source terms are referred here as 
"reaction". They often represent the major sources of nonlinearity in the process model 
(and can be delicate to formulate/identify in practice). 
 
2.2.5. Boundary conditions 
 
As already mentioned in several places, a number of BCs are required to completely 
specify an IBVP. These BCs can belong to three main categories: 
 

• Dirichlet BCs impose the value of the dependent variable at the boundary surface, 
i.e. 
 

( , )t=x q z  ∈Γz  (20) 
 
In the example of the adsorption column (Section 2.1), (11) is a Dirichlet BC. 
 

• Neumann BCs impose the value of the flux (normal to the boundary surface), i.e. 
 

( , )t∂
=

∂
x q z
n

 ∈Γz  (21) 

 
In the adsorption column, (15) is a Neumann BC. 
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• Mixed BCs are combinations of the previous BCs. For the adsorption column 
model (14), (11) could be replaced by a more general condition (e.g. Danckwerts 
boundary conditions) 
 

,in
, 0

( ) ( , 0)l
t z

cvc t vc t z D
z =

∂
= = −

∂
 (22) 

 
- 
- 
- 
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