
UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Rapid Prototyping for Model and Controller Implementation
- Peter Schwarz, Jörg Uhlig

©Encyclopedia of Life Support Systems (EOLSS)

RAPID PROTOTYPING FOR MODEL AND CONTROLLER
IMPLEMENTATION

Peter Schwarz
Fraunhofer Institute for Integrated Circuits IIS, Design Automation Division EAS
Dresden, Germany

Jörg Uhlig
Institute of Automation and Computer Control, Ruhr-University Bochum, Germany

Keywords: Controller design, prototype, rapid prototyping, fast implementation, model
implementation, simulation acceleration, hardware-in-the-loop, HIL simulation,
real-time simulation, FPGA, code generation, application-specific hardware, bypass
technique.

Contents

1. Definition of Rapid Prototyping
2. Goals
3. General solution
3.1. Implementation in Software
3.2. Implementation in Hardware
3.3. Real-time simulation, Hardware-in-the-loop (HIL)
4. Simulation acceleration
5. Conclusions
Acknowledgement
Glossary
Bibliography
Biographical Sketches

Summary

Rapid prototyping is a technique for fast, mostly automated realization of new systems.
The development of a small-scale prototype or a prototype which is not yet realized in the
final manufacturing technology allows us to test important features and the correct
principal functionality of the system already in early design phases. Controller prototypes
may be realized in software or as application-specific hardware. Code generators and
digital synthesis programs are the most important tools to reduce the prototype design
effort and are embedded in hardware and software development platforms. This
prototyping technology may also be used in computer-aided generation of hardware
implementations of simulation models for real-time simulation, hardware-in-the-loop
simulation, and acceleration of simulation.

1. Definition of Rapid Prototyping

A prototype (from the Greek word πρωτος, "the first") is a preliminary implementation
of a planned product or component which has the principal functionality of the final
product; sometimes it is also called a “model” of the new system. Rapid prototyping is

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Rapid Prototyping for Model and Controller Implementation
- Peter Schwarz, Jörg Uhlig

©Encyclopedia of Life Support Systems (EOLSS)

the computer-aided or automated generation of a prototype in an early design phase. The
prototype has to represent the essential properties but can be realized in another way as
the final product. In our context, new concepts of hardware- and software-based
control systems may be realized and tested very fast by rapid prototyping. Progress in
rapid prototyping during the last years leads to the fact that sometimes the automatically
generated prototype is so efficient that after testing it may be used as the final
implementation.

The rapid prototyping technology may be also used for an implementation of simulation
models to accelerate the simulation speed or to verify real-time simulation or
hardware-in-the-loop simulation.

2. Goals

The very high costs of hardware and software production are responsible for the
development of faster realization methods. Rapid prototyping is a key approach to solve
this problem. It supports the following activities in the design process:

• to detect design errors more early;
• to get indications of possible improvements of the design;
• to give potential users a more concrete model of the intended product;
• to test a user interface in an early design phase;
• to test the effectiveness and appeal of a particular solution;
• to develop a model case or practice exercise that can serve as a template for

others;
• to get user feedback and reactions to competing approaches.

The common design methodology and the idea of rapid prototyping may be illustrated by
the well-known V diagram of an industrial design process (Figure 1).

Figure 1: Design process

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Rapid Prototyping for Model and Controller Implementation
- Peter Schwarz, Jörg Uhlig

©Encyclopedia of Life Support Systems (EOLSS)

There exist many slightly different variants of this diagram in the literature if various
design tasks, a more or less detailed description of design steps, and special additional
aspects are specified by the design engineer. The figure is here adapted to the design of
control systems (especially of controllers) and provides only the essential design steps
which are discussed in this article in relation to rapid prototyping. Only a few iteration
loops for design validation and improving are presented in this figure.

The different types of controller implementation have to be considered with respect to
their specific design problems. The controller may be designed either as software (SW)
running on various types of processors, or as dedicated application-specific hardware
(HW), or both together which leads to HW-SW-Codesign. Typical controller
implementations are as following:

• Program running on a host computer (PC) coupled with the process
• Embedded systems:

 Microprocessor
 Programmable controller
 Digital signal processor (DSP)
 Microcontroller

• Programmable Logic Controller (PLC)
• Application-specific hardware:

Application-specific integrated circuit (ASIC), or especially:
Field Programmable Gate Arrays (FPGA)

mounted on a printed circuit board (PCB) together with other standard
components.

One of the most convenient way to develop a new controller algorithm and its prototype
implementation is software running on a host computer (e.g., a Personal Computer)
coupled with the process. This approach is supported by evaluation boards which are
plugged into the host computer and may contain the prototype processor, interface
devices such as analog-digital and digital-analog converters (ADC and DAC), compiler
and debugger (development tool kit, DTK). For industrial applications, controllers are
very often realized as embedded systems which incorporate programmable computers
or - more specific - programmable controllers. A more detailed description of embedded
system is: “Hardware and software which forms a component of some larger system and
which is expected to function without human intervention. A typical embedded system
consists of a single-board microcomputer with software in ROM, which starts running
some special purpose application programs as soon as it is turned on and will not stop
until it is turned off (if ever). It will not usually have any of the normal peripherals such as
a keyboard, monitor, serial connections, mass storage, etc. or any kind of user interface
software unless these are required by the overall system of which it is a part. Often it must
provide real-time response.”.

A programmable logic controller, PLC, is a dedicated computer system mostly used
for the automation in process or production engineering. The PLC is a
microprocessor-based device with interfaces to the industrial process and is used to
monitor the status of the sensors and to calculate output values which are send to the
actuators. The term “logic” is used because programming is primarily concerned with

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Rapid Prototyping for Model and Controller Implementation
- Peter Schwarz, Jörg Uhlig

©Encyclopedia of Life Support Systems (EOLSS)

implementing logic and switching operations. The programming of PLCs was restricted
to proprietary input languages of the vendors for a long time. Therefore, standardization
effort has been spent to overcome these difficulties which results in the standards IEC
1131 and IEC 1499. IEC 1131 specifies the syntax, semantics, and display for a suite of
PLC programming languages:

• LD Ladder diagram
• SFC Sequential Function Charts
• FBD Function Block Diagram
• ST Structured Text
• IL Instruction List

One of the essential benefits of this IEC standard is that it allows multiple languages (also
in textual or graphical form) to be used within the same programmable controller. This
allows the program developer to choose the language best suited to each particular task.
The standard IEC 1499 (function blocks for industrial-process measurement and control
systems) is directed to decentralized control and distributed architectures. It uses concepts
of object-oriented programming, e.g. design patterns, and supports dynamic
reconfiguration and re-use of large, complex software modules. Today, PLCs are not
often used in rapid prototyping but are essential devices for the final controller
implementation.

Controllers may be also realized as application-specific hardware, implemented as
ASIC (Application-Specific Integrated Circuit) or FPGA (Field Programmable Gate
Array). This implementation is necessary if the computer performance is not high enough
for signal processing or control algorithms. It is well-known that dedicated HW is 10 to
100 times faster than general-purpose processors due to its high degree of parallel
operating devices integrated on the chip.

The focus in this article is on FPGA because the effort to design ASICs is mostly too large
to be invested in controller design. FPGAs are integrated circuits or "chips" that can be
configured in the "field”. FPGA may consist of many millions of transistors and may
realize, therefore, also millions of basic digital functions (AND, OR, NAND, NOR, …)
or many of more complex functions (ADD, MULT, DIV for integer or floating-point
numbers). High-speed controllers may be implemented with these devices and - as a
result of their programmability - may be used in rapid prototyping.

With respect to prototyping, all kinds of programmable devices are candidates for
implementation. In our context, new concepts of hardware and software based control
systems may be realized and tested very fast by rapid prototyping. The first
system-validation is not longer done with the complete final implementation of the new
system as shown in Figure 1.

Instead a preliminary version for the first system validation is realized as a prototype of
the final product in an intermediate design step. It may be designed quickly and may be
changed after evaluation and detection of design errors (Figure 2).

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Rapid Prototyping for Model and Controller Implementation
- Peter Schwarz, Jörg Uhlig

©Encyclopedia of Life Support Systems (EOLSS)

Figure 2: Design process including rapid prototyping

This intermediate activity reduces the design process because

• the prototype implementation may be realized much faster than the final
implementation;

• the evaluation of the prototype leads to an early detection of design errors and to
design improvements;

• the prototype may be redesigned within a short time;
• the prototype may be transformed into the final implementation in a straight

forward manner.

This interpretation of “rapid prototyping” is common use in many technical disciplines. It
reflects the fact that it is very important for first functional tests to have a system
implementation which is not yet optimized with respect to the requirements of mass
production (e.g., cost effectiveness) but fulfills many other design requirements.
Especially in the design of controllers and other embedded systems, there is a trend to use
the “preliminary prototype”, after correction of design errors and performance
improvements, as the final implementation

It is possible to do this, if

• the generated prototype fulfills all requirements (e.g., function, timing behavior,
user interaction),

• the prototype hardware, the target, is the same as in the intended final
implementation.

In our special context, “rapid prototyping” becomes therefore more and more a synonym
for a very fast and automated design style. Powerful code generators with sophisticated
code optimization for all widely used processor types and FPGAs with millions of

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Rapid Prototyping for Model and Controller Implementation
- Peter Schwarz, Jörg Uhlig

©Encyclopedia of Life Support Systems (EOLSS)

elements together with automated logic design tools support this design paradigm shift.

The common consideration of the controller and the plant is a very important aspect in the
design of the controller, e.g., in model-based controller design and in the
simulation-based optimization of the controller’s behavior. It is also possible to couple a
real system (e.g., the plant) with a model (e.g., of the controller) for simulation purposes.
Some possibilities for the interaction of plant and controller and their models,
respectively, are presented in Figure 3, which also reflects a typical controller design flow
from the simulation and prototyping point of view.

Figure 3: Various forms of interaction between the physical systems (plant, controller,
controller prototype) and their models (running on a computer)

The design process starts with the common simulation of the plant model and the
controller model (Figure 3a) which may be realized by one of the well-known simulation
tools (e.g., Matlab/Simulink, MatrixX). If high-dimensional physical problems described
by differential equations are to be considered, tools as Dymola (with the modeling
language Modelica) or VHDL-AMS simulators may also be used.

Hardware-in-the-loop simulation (HIL) and real-time simulation (Figure 3b) are other

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Rapid Prototyping for Model and Controller Implementation
- Peter Schwarz, Jörg Uhlig

©Encyclopedia of Life Support Systems (EOLSS)

important methods for the simulation-based design of control systems and are extensively
used in automotive and aircraft design.

The term “hardware-in-the-loop” means: in the “simulation loop” of plant model and
controller model (Figure 3a) one of these subsystems is substituted by “real hardware” (in
Figure 3b, for example, the controller model running in a simulator is coupled with the
real plant via appropriate interfaces). The hardware is running in real time and, therefore,
the model has to be simulated fast enough to be coupled with the hardware leading to
real-time simulation.

In rapid prototyping, the controller model is substituted by a preliminary controller
implementation on one of the above mentioned HW devices (Figure 3c). It offers the
possibility to verify the controller design in a realistic environment so that the final
implementation (Figure 3f) based on the same controller design will satisfy the design
specifications.

If some parts of existing controllers may be re-used or if the existing controller strategies
have to be optimized, the bypass technology (Figure 3d) may be applied. It enables the
designer to test new functions together with the unchanged parts of the remaining
controller. E.g., driver software, operating system, or diagnosis subsystems are not
changed if some digital signal processing or control algorithms are improved.

Very often the prototype hardware (bypass hardware) does not communicate directly
with the system environment via its own I/O interfaces and, therefore, may use the I/O
functions of the re-used system residing on the target hardware.

The controller prototype or the final controller implementation may be tested together
with the plant model (Figure 3e) - this is another application of HIL and real-time
simulation.

In some cases the simulation speed is too low for the computer-aided design and
optimization of large or complicated control systems. Special implementation of models
for faster simulation is therefore necessary (simulation acceleration). The concept of a
rapid prototype implementation may be used also in such specialized hardware
implementation of model equations for accelerated simulation.

3. General solution

Rapid prototyping of controllers and model implementations for fast simulation follows a
design flow, depicted in Figure 4, which is supported by commercial tools, e.g. code
generators for software implementation on processors or design tools for Electronic
Design Automation (EDA) for hardware implementation, standardized description
languages or their graphical representation, and simulators for design verification.

The term “synthesis” is used to emphasize that the design step from detailed
specifications to the prototype implementation is heavily supported by algorithms to
automate this activity.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Rapid Prototyping for Model and Controller Implementation
- Peter Schwarz, Jörg Uhlig

©Encyclopedia of Life Support Systems (EOLSS)

Figure 4: Design of prototypes

Very often, prototypes are running on a different implementation basis as the final
system: SW is running on a host processor instead of the target processor in the final
embedded system, HW is realized finally as a FPGA instead of a full-custom or
standard-cell based ASIC. Rapid prototyping on HW is related to a lot of scientific
problems, as e.g. fully automated design flow; optimization of area, clock frequency and
power consumption, but the state-of-the-art for practical applications is only available
from the vendors of the FPGA hardware and of the design support tools and the same
statement is true for SW prototyping and code generation. Therefore, in many cases the
websites of vendors have to be referenced instead of conference papers or journal articles.
For the basic HW design tasks, the logic gate and block level design, some books exist
which focus on different description languages (VHDL and Verilog which are
standardized by IEEE). Some of these books contain simple or more complicated
examples of controller designs and therefore allow the not yet very experienced designer
the successful implementation of FPGA devices. Rapid SW prototyping with automatic
code generation is best described in tutorials or white papers of the vendors.

The specification phase is relatively independent of the final implementation in HW or
SW. The following formalisms are used to create models as executable specifications:

Discrete systems: State charts and finite state machines (FSM) as representations of

automata, discrete algorithms, difference equations, z-domain description.

Continuous systems: Mathematical descriptions in form of
 ODE Ordinary differential equations,
 DAE Differential-algebraic equations.

Very often a graphical block diagram representation supported by many design
tools is used instead of textual formulas. Linear systems are mostly described in
form of a transfer function, a filter characteristic, or a linear state-space
description.

The following synthesis steps strongly depend on the implementation target (hardware or
software).

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Rapid Prototyping for Model and Controller Implementation
- Peter Schwarz, Jörg Uhlig

©Encyclopedia of Life Support Systems (EOLSS)

-
-
-

TO ACCESS ALL THE 23 PAGES OF THIS CHAPTER,

Click here

Bibliography

Aho A.V., Sethi R., and Ullmann J. D. (1988). Compilers: principles, techniques and tools, 769 pp.,
Reading, MA: Addison-Wesley. [A standard textbook which also covers code optimization.]

Ashenden P. J., Peterson G. D., and Teegarden D. A. (2002). The System Designer’s Guide to VHDL-AMS,
906 pp., San Francisco: Morgan Kaufmann Publishers. [This book is one of the first comprehensive
presentations of VHDL-AMS, a language to model mixed continuous-discrete systems.]

Banerjee P. et al. (2004). Overview of a compiler for synthesizing MATLAB programs onto FPGAs. IEEE
Trans. VLSI-12 (2004)3, 312-324. [The paper describes a Matlab-based design flow which leads to the
implementation of an algorithm as application-specific hardware.]

Booch G. (1994). Object Oriented Analysis and Design with Applications, 608 pp., Reading MA:
Benjamin/Cummings, 2nd ed. [A standard book about object oriented software design.]

Dunning G. (2001). Introduction to Programmable Logic Controllers, 480 pp., Delmar Thomson Learning;
2nd ed. [An application-oriented textbook on PLC design and application.]

Elmqvist H., Mattsson S.E., and Olsson H. (2002). New methods for hardware-in-the-loop simulation of
stiff models. Proc. Modelica'2002, Oberpfaffenhofen, Germany, 59-64. (download from
http://www.Modelica.org/Conference2002/papers.shtml). [This conference paper presents an approach to
real-time simulation in the context of the Modelica language.]

FPGA (2004). 12th ACM International Symposium on Field-Programmable Gate Arrays. [An example of
yearly organized conferences on FPGA synthesis.]

Gamma E., Helm R., and Johnson R. (1995). Design Patterns - elements of reusable object-oriented
software, 416 pp., Reading, MA: Addison-Wesley. [A textbook about important aspects of object-oriented
software design.]

Hamblen J.O., and Furman M.D (2001). Rapid Prototyping of Digital Systems - a Tutorial Approach, 270
pp., Boston: Kluwer. [An introduction to rapid prototyping based on Altera’s FPGA design platform.]

Harel D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer Programming
8(1987)3, 231-274. [A classical paper on graphical model and system representation.]

Harel D. et al. (1990). Statemate: a working Environment for the Development of Complex Reactive
Systems, IEEE Trans. Software Engineering SE-16, 403-414. [The description of one of the first tools on
system simulation based on Statechart representation of dynamical systems.]

Haufe J., Fritsch C., Gulbins M., Lueck V., and Schwarz, P. (1998). Real-time debugging of digital
integrated circuits. Paris: Proc. Design, Automation and Test in Europe Conference, User Forum
(DATE’98), 235-241. [The paper describes the debugging extensions in FPGA-based rapid prototyping.]

Haufe J., Schwarz P., Berndt T., and Grosse J. (1998). Accelerated Logic Simulation by Using Prototype
Boards. Paris: Proc. Conf. Design, Automation and Test in Europe (DATE’98), 183-189. [The paper
describes the coupling of logic simulators with FPGA prototyping boards to accelerate digital simulation of
large control and data processing algorithms.]

Hughes T.A. (2000). Programmable Controllers, 334 pp., Instrument Society of America; 3rd edition. [An
introduction to PLC design and application.]

Patterson D. A., and Hennessy J. L. (2003). Computer Architecture - A Quantitative Approach, 1100 pp.,

http://www.eolss.net/Eolss-sampleAllChapter.aspx
https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-43-07-05

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Rapid Prototyping for Model and Controller Implementation
- Peter Schwarz, Jörg Uhlig

©Encyclopedia of Life Support Systems (EOLSS)

San Francisco, CA: Morgan Kaufmann Publ. [A classical textbook on computer architecture and basics on
compiler writing.]

Reinemann T., and Kasper R. (2001): High Speed Implementation of Controllers and Filters for
Mechatronic Systems; http://www.techonline.com/community/home/14817. [Link to a report on FPGA
prototyping for controller design.]

Salcic Z., and Smailagic A. (1997). Digital Systems Design and Prototyping Using Field Programmable
Logic, 648 pp., Boston: Kluwer. [Introduction to FPGA based rapid prototyping.]

Smith D. J. (2000). HDL Chip Design - a Practical Guide for Designing, Synthesizing and Simulating
ASICS and FPGAs using VHDL and Verilog, 448 pp., Madison, AL, Doone Publications, 8. printing. [A
widely used book on logic synthesis in the context of FPGA design.]

Wilson B. G., Jonassen D. H., and Cole P. (1993). Cognitive approaches to instructional design. In G. M.
Piskurich (Ed.), The ASTD handbook of instructional technology (pp. 21.1-21.22), New York:
McGraw-Hill. Also available at http://www.cudenver.edu/~bwilson. [A general discussion on prototyping,
independent of special applications.]

Instead of publications, Internet site addresses should be used as references to design tools (e.g., simulators
and code generators) and prototype platforms as well as to standardized modeling languages. With respect
to the rapid development of such software (and the occasionally rapid change of tool names and trade
marks), the best way to up-to-date information is to check the homepages of the hardware and software
providers:

http://www.dspace.de [dSpace - a vendor of prototyping systems.]

http://www.dynasim.se [Dymola, a multi-physics simulator with Modelica as modeling language.]

http://en.etasgroup.com [ETAS - a vendor of prototyping systems.]

http://www.mathworks.com [Control system design and simulation environment Matlab/Simulink, widely
used entry point for rapid prototyping.]

http://www.modelica.org [Modelica is a powerful modeling language; many links to Modelica-related
publications and the language specification, also to hardware-in-the-loop and real-time simulation
applications.]

http://www.ni.com/matrixx [National Instruments: Control system design and simulation environment
MatrixX, also used for rapid prototyping.]

http//:www.synopsys.com [Synopsys: one of the leading vendors of software for synthesis of digital
hardware and system simulation.]

http://www.nr.com [Link to Numerical Recipes, a collection of algorithms in numerical mathematics.]

http://www.vhdl.org/analog [This is the official website of the IEEE standardization working group for the
powerful mixed-signal modeling language VHDL-AMS, the Analog and Mixed Signal extension of
VHDL.]

Rapid prototyping, real-time simulation, and hardware-the-loop are areas with a lot of differently used
words, especially in the context of vendor’s presentations. It may be helpful to search in some glossaries
and dictionaries, e.g.

http://www.hyperdictionary.com/dictionary and http://wikipedia.com or other search machines.

Biographical Sketches

Peter Schwarz received the diploma and the Ph.D. degree in electrical engineering from the Dresden
University of Technology in 1964 and 1967, respectively. He worked in the Ro-botron Computer Company
in Dresden and was responsible for research and development in a CAD group. From 1982 to 1991 he was
the leader of the research group "Simulation" at the Central Institute for Cybernetics and Information
Processes of the Academy of Sciences in Dresden. He was engaged in the development of a multi-level,
mixed-signal simulator KOSIM which was used in industry and research institutes at that time. He received
the Habilitation degree from the Dresden University of Technology in 1989. Since 1992 he has been
working with the Fraunhofer Institute for Integrated Circuits, Design Automation Division EAS Dresden.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Rapid Prototyping for Model and Controller Implementation
- Peter Schwarz, Jörg Uhlig

©Encyclopedia of Life Support Systems (EOLSS)

He is the head of the Modeling and Simulation department with about 30 engineers, mathematicians, and
physicists. His special interests are now multi-level, mixed-signal modeling and simulation of complex
heterogeneous systems, web-based simulation and optimization, and knowledge transfer in life-long
learning. Application areas are integrated circuit design, micro-electrical-mechanical systems (MEMS),
telecommunications, mechatronics, and automation systems. He is member of IEEE and VDE.

Jörg Uhlig received the diploma degree in electrical engineering at the Ruhr-Universität Bochum 1996.
Currently he is working as a research assistant at the Institute of Automation and Computer Control,
Ruhr-Universität Bochum. His current research interests are in control-ling redundant lightweight
manipulators. His activities are subdivided in building an open control system and in applying modern
control methods to a four link lightweight manipulator. Several adaptive, robust and predictive control
methods are used to find the best solution for this manipulator.

