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Summary 
 
This chapter presents some aspects of modeling and simulation of control systems. The 
controller and the controlled plant have to be simulated together. Block-oriented 
simulators (e.g. the very popular MATLAB/SIMULINK, which is also mentioned in 
other articles of this theme) are widely used for this task. But in many situations it is more 
convenient to apply simulators which use flow and difference variables to model the 
systems and the interaction of their components in the electrical, mechanical, hydraulic, 
or fluidic domain. 
 
 Languages for behavioral and structural modeling of heterogeneous physical systems 
have been developed in the last years; some of them are standardized by the IEEE 
organization. These modeling languages (e.g. VHDL-AMS and Modelica) are supported 
by powerful simulators which are capable of solving continuous DAE systems together 
with discrete-event models (hybrid simulation, mixed-signal simulation).  Modeling with 
(generalized) Kirchhoff’s networks is very appropriate to the physical nature of the plant 
and may be considered as an object-oriented modeling approach. 
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1. Aims of Modeling Languages 
 
For the validation of a new control system and for understanding physical phenomena, 
simulation is the most powerful computer-aided analysis method. Parameter variation 
and optimization as well as sensitivity investigations may be carried out by simulation. 
The controlled plant and the controller have to be modeled and simulated together 
(Figure 1).  

 

 
 

Figure1: Common modeling of plant and controller 
 
From the physical point of view we have to consider: 
 
• mixed-domain systems (mechanical, electrical, thermal, fluidic, ... phenomena), 
• partially close coupling between these domains (especially in plant modeling), 
• spatially distributed and lumped (concentrated) elements, 
• discrete-time and continuous-time signals and systems (e.g. in electronics: analog 

and digital control systems). 
 
Therefore various mathematical descriptions have to be taken into account: 
 
• partial and ordinary differential equations, 
• very large and stiff systems of differential equations to describe  the continuous 

subsystems, 
• linear as well as nonlinear differential equations, e.g. in the form of linear state-space 

descriptions (ODE) or nonlinear differential-algebraic equations (DAE), 
• automata, BOOLEAN expressions, finite state machines (FSM), PETRI nets. 
 
The distinction between a directed signal flow and energy-related quantities (e.g. with 
“effort and flow variables”, see Modeling and Simulation of Dynamic Systems Using 
Bond Graphs) is also very important for the modeling approach and the choice of a 
simulator. System simulation means, therefore, the simulation of very complex and often 
also heterogeneous systems. To emphasize these aspects, sometimes it is called overall 
system simulation. 
 
To understand the basic problems of choosing a suitable simulator and a modeling 
approach, let us have a look at the underlying simulation principles. At first, we will focus 
on the simulation of continuous systems described by nonlinear differential-algebraic 
equations (DAE) or explicit ordinary differential equations (ODE): 
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( , , , )d t
dt

=
xf x u 0  (1a) 

 

( , , )d t
dt

=
x h x u  (1b) 

( x  = vector of system variables, u  = vector of input variables, t  = time). The user has to 
formulate the simulation problem description in textual or graphical form. It is the task of 
the input compiler to set-up an internal representation of the complete DAE or ODE 
system on the basis of the system topology, new user-defined models, and internal 
equations of build-in models, see Figure 2. 
 

 
 

Figure 2: Simulator structure and modeling languages 
 
There are also two other basically different forms of problem descriptions: 
structure-oriented and equation-oriented (and a mixture of them). Various graphical and 
textual description styles of control systems are presented in other contributions of this 
theme. To illustrate some description forms of the plant, different models of the same 
technical system are presented in Figure 3. The technical system (a very small part of a 
mechanical system) consists of a mass, a spring and a damping part and is modeled by the 
interconnection of the model elements M, K, and D.  
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Figure 3: Simple mechanical system 
 

There are, principally, two ways to model such a system: 
 
 -  as a mathematical description, which may be formulated as  
      *  a text written in the style of a programming language  
      *  a block diagram, e.g. for the popular SIMULINK simulator 
 -  as a “physical” model with a structure similar to the structure of the original system 
    *  a mechanical network  
   *  an electrical network (constructed by using analogy relations) 
 
In this example, the different model descriptions are illustrated with respect to continuous 
systems. Similar possibilities exist for modeling discrete systems, e.g. graphically 
described queuing systems and an equivalent textual GPSS model, or a state-chart model 
of a digital controller which may be transformed into a textual VHDL (or Verilog) model.  
 
In the context of the various modeling possibilities, the following notation is often used: 
 
Behavioral model: The behavior of the whole system or of a component (an element) is 
described by mathematical formulas. The notation may be carried out in the form of a 
program written in a universal programming language (FORTRAN, C, C++), in a 
simulator-specific description language (such as MAST for Saber), or in a standardized 
modeling language (e.g. CSSL or VHDL-AMS).  
 
Structural model: A complex model results from the interconnection of simpler 
components. For these basic components simulator-internal models exist, the so-called 
build-in models or “simulator primitives”. Such basic components are, e.g., resistors, 
capacitors, linear transfer function blocks (e.g. a PID block), adders, multipliers, and 
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different types of signal sources. While older simulators only support this type of 
modeling, modern simulators additionally permit a behavioral element description 
formulated by the user.  
 
A mixed structural and behavioral description is particularly efficient: the whole system 
is modeled by the interconnection of subsystems which are modeled by behavioral 
descriptions or, hierarchically, by the interconnection of other basic elements. Behavioral 
modeling is the most comfortable way to include numerical models resulting from 
identification procedures (see Identification of Nonlinear Systems and Identification of 
Linear Systems in Time Domain). 
 
In many cases the decomposition of a system model into the interconnection of simulator 
primitives may be carried out easily. The widely used simulator MATLAB/SIMULINK 
with its graphical input facilities and large libraries of control system block models or the 
circuit simulator SPICE with its electronic component models are popular examples.  But 
in the case of modeling complicated phenomena it is more convenient to use 
mathematical formulas and algorithms to describe the behavior of components. In these 
applications it is necessary to formulate the model equations in a user-friendly form. 
These requirements led to the development of modeling languages which can describe 
the interconnection of components or subsystems as well as the individual model 
equations of some components or subsystems. 
 
2. Historical background 
 
Modeling languages have a long history (see Modeling and Simulation of Dynamic 
Systems, Simulation Software - Developments and Trends). CSMP, ACSL, the standard 
CSSL, Modelica, Dymola, GPSS and SIMSCRIPT are only a few (but very important) 
simulation languages for general continuous, discrete or hybrid (= continuous + discrete) 
systems. Additional simulation languages are very popular in special application areas 
like mechanics and electronics.  
 
It was a feature of the first simulation languages that the user is responsible for the 
notation of model equations in a “correct order”. “Simulation” was then reduced to a 
step-by-step evaluation of these equations (as in all sequential programming languages). 
“Correct order” means sorting the model equations according to the directed signal flow:  
 

- ports of  all elements (“blocks”) can be partitioned into input and output ports, 
- there is a directed (or uni-directional) signal flow between the blocks and, 

herefore, it is possible to calculate the new output signal ix  of a block i  by 
using the output signals of preceding blocks -1,  - 2,  ,i i …  which have been 
already calculated, as input signals of the block i :  

 
( )021 ,...,, xxxfx iiii −−=  (2) 

 
In newer simulators these strong requirements have been relaxed: the input processor of 
the simulator sorts the equations automatically. Nevertheless, up to now many simulators 
(sometimes named “block-oriented simulators”) are based on the directed signal-flow 
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paradigm. The internal mathematical description is an explicit system of differential 
equations (ODE): 
 

( , , )d t
dt

=
x f x u         (3) 

 
These simulators do not allow the formulation of “algebraic loops” in the modeling 
language or need special language constructs to force iteration procedure for solving the 
loop problem, see Simulation Software - Developments and Trends. The mathematical 
equivalent of an algebraic loop is a linear system of algebraic equations 
 
0 ( , , )t= g x u   (4) 
 
which can not be solved directly by the usual ODE solvers of  (3). These problems may be 
avoided by simulators which are constructed to solve the nonlinear DAE system (1a) with 
implicit numerical solution algorithms. Similar problems exist in the simulation of 
discrete systems: feedback loops with zero delay are not allowed in some simulators or 
require special iteration algorithms in more powerful discrete-event simulators. 
 
Most simulation languages are used for textual model description but often pre-compilers 
generate these textual descriptions from graphical descriptions (e.g. block diagrams, 
signal-flow graphs, bond graphs, networks or circuit diagrams, state charts, PETRI nets). 
To combine textual and graphical model representations, some modern languages support 
both. 
 
3. A Modeling Approach 
 
3.1 Physical background 
 
In this contribution we will focus on the common modeling of the plant and the controller. 
The main focus will be the description of continuous systems but we will also have a look 
at discrete and hybrid systems too. Continuous systems may be classified into: 
 
- conservative physical systems: their variables are flow quantities and difference 

quantities, and compatibility constraints exist for these quantities;  
- non-conservative physical systems: consisting of elements with inputs and outputs 

and only one type of quantities. 
-  
 

Physical domain Flow quantity Difference quantity 
electrical current voltage 
mechanical-translational  force velocity 
mechanical-rotational torque angular velocity 
pneumatic volume flow pressure 
thermal heat flow temperature 

 
Table 1: Flow and difference quantities in different physical domains 
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A flow quantity (through quantity or 1-quantity) is measured at one point of the physical 
system (e.g. an electrical current or a hydraulic flow). A difference quantity (across 
quantity or 2-quantity) is measured between two points, e.g. a mechanical displacement 
or an electrical voltage. Table 1 shows some of the most important flow and difference 
quantities occurring in physical systems.  
 
The terms “conservative” and “non-conservative” are very often used in the field of 
modeling technical systems, and must not be confused with the same term used in 
theoretical physics for the description of dissipative and irreversible systems! The term 
"conservative physical systems" is motivated in our context by the fact that compatibility 
constraints for flow and difference quantities are valid. They arise from the 
interconnection of components (or subsystems) and, therefore, the term “interconnective 
constraints“ is sometimes used. In electrical systems, these constraints are the 
well-known Kirchhoff's current law (KCL, node law) and voltage law (KVL, mesh law). 
Similar conservation laws for flow and difference quantities are also valid in many other 
physical domains.  
 
This fact can be reflected in different classes of system models: conservative system 
models with conservative signals (flow and difference signals) and non-conservative 
systems (with non-conservative signals). We use the term "signal" as a model of all kinds 
of physical quantities which are able to exchange energy or information between the 
subsystems (in the context of VHDL, “signal” is there used in a very specific manner!). 
We will use the term "network" to describe a system model consisting of elements, 
connections between these elements, and conservative signals.  
 
To emphasize  the fact that these networks are models of physical systems in different 
domains, sometimes the term "generalized Kirchhoffian network" is used. Bond graphs 
(with effort and flow variables, see Modeling and Simulation of Dynamic Systems Using 
Bond Graphs) are closely related to networks. Their construction leads more or less 
directly to the formulation of an ODE system.  
 
Non-conservative quantities are typical for controllers or digital signal-processing 
devices. Block diagrams (see Figure 2) or signal-flow graphs are appropriate models of 
these physical systems. Conservation laws do not exist on this level of abstraction. 
(Signals in discrete systems could also be considered as “non-conservative” but this 
notation is usually not applied in the discrete world.) 
 
Languages for modeling complex heterogeneous systems have to fulfill a lot of 
requirements which are not fully supported by most of the existing modeling languages: 
 
- mixed-domain capability (mechanics, electronics, fluidics, …); 
- continuous and discrete time variables; 
- continuous and discrete value variables; 
- conservative and non-conservative quantities; 
- structure as well as behavior may be described; 
- the structure of the model should be similar to the structure of the physical system; 
- models may be structured hierarchically; 
- the behavior of elements or subsystems may be defined by the user (e.g. by differential 
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equations or automata / finite state machines FSM). 
 
Before presenting two modeling languages which fulfill these requirements, we will 
discuss a very general physically-oriented modeling approach which is appropriate to 
model the controller as well as the plant. 
 
3.2 The Multi-Port Approach 
 
The multi-port modeling approach is illustrated in Figure 4. 
 
- The complete system is decomposed into subsystems, the so-called multi-ports. The 

subsystems have ports (or terminals) to communicate with each other via their 
interconnections. Signals are separated into external signals between the subsystems, 
and internal signals within the subsystems. 

- External signals may be conservative (flow signals e5, e6, e7, e8, e9; difference 
signals e1, e2 in the example) or non-conservative (e3, e4). 

- The behavior of subsystems only depends on their port signals (and sometimes on 
some internal signals and their initial conditions). 

 

 
 

Figure 4: Multi-port modeling of heterogeneous systems 
 
This is a very general but effective approach and it corresponds to the intuitive way of 
understanding complex systems: decomposing into more simple subsystems and 
calculating the interaction between the subsystems.  
 
In electrical circuit theory, multi-poles and multi-ports may be distinguished as such 
subsystem models. But in our more general context this distinction between multi-poles 
and multi-ports is not substantial and, therefore, we will only use the term multi-port.  
 
Each subsystem can be substituted by other subsystems with the same terminal behavior 
without any influence on the behavior of the rest of the system. The behavior of a 
subsystem can be expressed: 
 
- implicitly by the connection of other subsystems (or primitives on the lowest level): 
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hierarchical structural refinement, 
- explicitly by a set of equations (e.g. nonlinear differential-algebraic equations): 

"behavioral modeling" in a strict sense, or 
- by a combination of both if the simulator has language constructs to formulate mixed 

structural-behavioral descriptions. 
 
The key problem in setting-up the system equations is the description of the terminal 
behavior of the subsystems. All other equations are essentially constraints resulting from 
the connection of the subsystems, especially the node and mesh law for flow and 
difference signals on conservative terminals, and can be constructed automatically. 
 
An external view of a multi-port and a system of associated model equations is shown in 
Figure 5. Terminal signals of the same type are assembled into vectors (written in bold 
types). The signals are vector-valued functions of time t . The terminal signals are divided 
into the following categories: 
 

1 2 in in, , ,v i a d difference, flow, and non-conservative signals (analog and digital) which 

may be chosen independently as “input signals” to compute the response of the 
multi-port, 
 

2 1 out out, , ,v i a d     difference, flow, and non-conservative signals (analog and digital) 

which are dependent quantities and are calculated as “output signals”. 
 

 
 

Figure 5: General multi-port description 
 
In many cases it is impossible to compute the terminal behavior based on terminal signals 
only. Subsystems may have internal states and, therefore, the introduction of a vector of 
additional signals s is necessary. The terminal behavior is also determined by the values 
of some parameters described by a parameter vector p . On very wide assumptions, the 
terminal behavior of multi-ports can be given by the equations (E1)-(E5) in Figure 5.  
 
Equations (E1)-(E4)  are differential-algebraic equations (DAE). They can be solved by 
numerical solution algorithms. The last equation (E5) is meant more symbolically: in 
contrast to equations (E1)-(E4) for calculation of continuous variables which are 
described very similarly in almost all modeling languages, the description of discrete 
systems differs considerably in the different languages and is not always formulated in 
the syntactical form of an “equation”. This equation (E5) is mostly solved by 
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discrete-event simulation algorithms which are very popular in general system simulation 
and in digital electronic simulation. The combined solution of continuous and discrete 
equations is known as hybrid simulation, analog-digital simulation, or mixed-signal 
simulation.  
 
This multi-port modeling approach is closely related to object-oriented modeling. 
Unfortunately, there is no generally accepted concept of object-orientation in modeling 
and simulation. From the author's point of view, the following classification is useful: 
 
- Object-oriented modeling: the construction of strictly hierarchical, modular 

structured models. This interpretation of object-oriented modeling was emphasized 
by Cellier.  

- Object-oriented simulation: each subsystem is considered as an object. Each object 
has its own simulation algorithm (a "method"). All objects communicate via message 
passing, coordinate their behavior, and so the simulation of the entire system is carried 
out. A similar definition is: object-oriented simulation is the concurrent operation of 
different simulators without a global controller or a master simulator. 

- Object-oriented programming: the application of programming languages like C++ 
or Smalltalk (and, more general, a powerful method to design complex software 
systems). 

 
All these approaches exist independently from each other but they can be combined.  
We will focus on object-oriented modeling. Modularity is guaranteed by the multi-port 
approach because the interaction between the subsystems occurs only via the signals on 
the terminals (the interface). There are no global variables, and side-effects are excluded. 
Hierarchy is achieved by the structural refinement mentioned above and by the hierarchy 
concepts of modeling languages used for behavioral modeling.  
 
Other aspects of object-oriented modeling are: 
 
- The structural similarity between a functional-oriented partitioning of the original 

physical system and the decomposition of the system model into subsystem models.  
- The subsystem models should be combined without detailed knowledge of the user 

about the internal model realization (“plug and play” principle and information 
hiding). 

- The user has to give a topological description of the interconnection of the subsystems 
and, eventually, to model the behavior of some components. Setting-up the equations 
which describe the behavior of the whole system is the task of the simulator (its input 
language processor), and not of the user. 

- With the same interface description, different behavioral descriptions may be used to 
obtain appropriate degrees of accuracy of the models and to carry out 
multi-level-simulation (i.e. the simulation with models described on different levels 
of abstraction). 
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Schwarz P. (2000). Physically oriented modeling of heterogeneous systems. Mathematics and Computers 
in Simulation 53, 333-344. 

Schwarz P., and Haase J. (1998). Behavioral modeling of complex heterogeneous microsystems, Lausanne: 
Proc. 1st Intern. Forum on Design Languages (FDL’98), 53-62, or in: Mermet, J. (Edt.) (2001). Electronic 
chips & Systems Design Languages, 314 pp., Dordrecht: Kluwer 17-30. [The paper describes the 
application of modeling languages in micromechanical systems simulation.] 

Tiller M. (2001). Introduction to Physical Modeling with Modelica, 366 pp., Dordrecht: Kluwer. [This was 
the first Modelica textbook and contains a presentation of basic ideas and many application examples.] 

Tonti E. (1976). The reason for analogies between physical theories. Appl. Math. Modelling 1, 37-50. [This 
is a “classical” paper on modeling in different physical domains.] 

Villar, E. and Mermet, J. (Editors) (2003 ). System Specification & Design Languages, 355 pp., Dordrecht, 
Kluwer. [Some papers in this book describe the application of different mixed-signal modeling languages: 
Modelica, VHDL-AMS and SystemC-AMS as well as mixed-signal simulation algorithms.] 

Voigt P., and Wachutka G. (1998). Electro-fluidic microsystem modeling based on Kirchhoffian network 
theory.  Sensor and Actuators A 66 (1998)1-3, 6-14. 

Wachutka G. (1995). Tailored modeling: a way to the ‘virtual microtransducer fab’ ?  Sensor and Actuators 
A 46-47 (1995), 603-612. [The concept of (generalized) Kirchhoffian networks is discussed in these two 
papers.] 

Wellstead P.E. (1979). Introduction to Physical System Modelling, 288 pp., London: Academic Press. [This 
book describes the modeling of physical systems with networks and bond graphs.] 

Instead of publications, Internet site addresses should be used as references to simulators or other tools as 
well as to standardized modeling languages. Owing to the rapid development of such software (and the 
occasionally rapidly changing tool names and trade marks), the best way to up-to-date information is to 
check the homepages of the software providers: Simulators which are very useful in control system design 
are described on the following web sites: 

http://www.analogy.com [Saber and modeling language MAST] 

http://www.ilogix.com [Graphically oriented simulation environment Statemate] 

http://www.cadence.com [Mixed-signal simulators, VHDL-AMS] 

http://www.dynasim.se [Dymola, for Modelica simulation] 

http://www.iti.de [Mechatronics and control system simulator ITI-SIM]  

http://www.mathworks.com [Control system design and simulation environment MATLAB/SIMULINK]  

http://www.ni.com/matrixx/ [Control system design and simulation environment MATRIXx] 

http://www.mentor.org [Mixed-signal simulators, VHDL-AMS] 

http://www.ansoft.com/products/em/simplorer/ [Mixed-signal simulator for physical systems, 
VHDL-AMS] 

http://www.synopsys.com/  [Mixed-signal simulators, VHDL-AMS, Verilog-AMS] 

Modelica: http://www.modelica.org/ .  [Many links to Modelica-related publications and the Language 
Specification.] 

VHDL-AMS (VHDL – Analog and Mixed Signal Extensions): http://www.vhdl.org/analog/ [This is the 
official website of the IEEE standardization working group.] 
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University of Technology in 1964 and 1967, respectively. He worked in the Robotron Computer Company 
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in Dresden and was responsible for research and development in a CAD group. From 1982 to 1991 he was 
the leader of the research group "Simulation" at the Central Institute for Cybernetics and Information 
Processes of the Academy of Sciences in Dresden. He was engaged in the development of a multi-level, 
mixed-signal simulator KOSIM which was used in industry and research institutes at that time. He received 
the Habilitation degree from the Dresden University of Technology in 1989. Since 1992 he has been 
working with the Fraunhofer Institute for Integrated Circuits, Design Automation Division EAS Dresden. 
He is the head of the Modeling and Simulation department with about 30 engineers, mathematicians, and 
physicists. His special interests are now multi-level, mixed-signal modeling and simulation of complex 
heterogeneous systems, web-based simulation and optimization, and knowledge transfer in life-long 
learning. Application areas are integrated circuit design, micro-electrical-mechanical systems (MEMS), 
telecommunications, mechatronics, and automation systems. He is member of IEEE and VDE. 


