
UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Modeling Languages for Continuous and Discrete Systems -
Peter Schwarz

©Encyclopedia of Life Support Systems (EOLSS)

MODELING LANGUAGES FOR CONTINUOUS AND DISCRETE
SYSTEMS

Peter Schwarz
Fraunhofer Institute for Integrated Circuits IIS, Design Automation Division EAS
Dresden, Germany

Keywords: Behavioral model, Block diagram, Controller, Conservative quantity,
Constitutive relation, DAE, Difference variable, Discrete time system, Flow variable,
HDL, Interconnective constraints, Kirchhoff’s law, Mixed-signal simulation, Modelica,
Modeling Language, Multi-port, Network, Non-conservative quantity, Object-oriented
modeling, ODE, Plant, Signal flow graph, Structural model, System simulation, VHDL,
VHDL-AMS.

Contents

1. Aims of Modeling Languages
2. Historical background
3. A Modeling Approach
3.1 Physical background
3.2 The Multi-Port Approach
4. Modeling Languages
4.1 VHDL-AMS
4.2 Modelica
5. A comparison of VHDL-AMS and Modelica
6. Conclusions
Acknowledgement
Glossary
Bibliography
Biographical Sketch

Summary

This chapter presents some aspects of modeling and simulation of control systems. The
controller and the controlled plant have to be simulated together. Block-oriented
simulators (e.g. the very popular MATLAB/SIMULINK, which is also mentioned in
other articles of this theme) are widely used for this task. But in many situations it is more
convenient to apply simulators which use flow and difference variables to model the
systems and the interaction of their components in the electrical, mechanical, hydraulic,
or fluidic domain.

 Languages for behavioral and structural modeling of heterogeneous physical systems
have been developed in the last years; some of them are standardized by the IEEE
organization. These modeling languages (e.g. VHDL-AMS and Modelica) are supported
by powerful simulators which are capable of solving continuous DAE systems together
with discrete-event models (hybrid simulation, mixed-signal simulation). Modeling with
(generalized) Kirchhoff’s networks is very appropriate to the physical nature of the plant
and may be considered as an object-oriented modeling approach.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Modeling Languages for Continuous and Discrete Systems -
Peter Schwarz

©Encyclopedia of Life Support Systems (EOLSS)

1. Aims of Modeling Languages

For the validation of a new control system and for understanding physical phenomena,
simulation is the most powerful computer-aided analysis method. Parameter variation
and optimization as well as sensitivity investigations may be carried out by simulation.
The controlled plant and the controller have to be modeled and simulated together
(Figure 1).

Figure1: Common modeling of plant and controller

From the physical point of view we have to consider:

• mixed-domain systems (mechanical, electrical, thermal, fluidic, ... phenomena),
• partially close coupling between these domains (especially in plant modeling),
• spatially distributed and lumped (concentrated) elements,
• discrete-time and continuous-time signals and systems (e.g. in electronics: analog

and digital control systems).

Therefore various mathematical descriptions have to be taken into account:

• partial and ordinary differential equations,
• very large and stiff systems of differential equations to describe the continuous

subsystems,
• linear as well as nonlinear differential equations, e.g. in the form of linear state-space

descriptions (ODE) or nonlinear differential-algebraic equations (DAE),
• automata, BOOLEAN expressions, finite state machines (FSM), PETRI nets.

The distinction between a directed signal flow and energy-related quantities (e.g. with
“effort and flow variables”, see Modeling and Simulation of Dynamic Systems Using
Bond Graphs) is also very important for the modeling approach and the choice of a
simulator. System simulation means, therefore, the simulation of very complex and often
also heterogeneous systems. To emphasize these aspects, sometimes it is called overall
system simulation.

To understand the basic problems of choosing a suitable simulator and a modeling
approach, let us have a look at the underlying simulation principles. At first, we will focus
on the simulation of continuous systems described by nonlinear differential-algebraic
equations (DAE) or explicit ordinary differential equations (ODE):

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Modeling Languages for Continuous and Discrete Systems -
Peter Schwarz

©Encyclopedia of Life Support Systems (EOLSS)

(, , ,)d t
dt

=
xf x u 0 (1a)

(, ,)d t
dt

=
x h x u (1b)

(x = vector of system variables, u = vector of input variables, t = time). The user has to
formulate the simulation problem description in textual or graphical form. It is the task of
the input compiler to set-up an internal representation of the complete DAE or ODE
system on the basis of the system topology, new user-defined models, and internal
equations of build-in models, see Figure 2.

Figure 2: Simulator structure and modeling languages

There are also two other basically different forms of problem descriptions:
structure-oriented and equation-oriented (and a mixture of them). Various graphical and
textual description styles of control systems are presented in other contributions of this
theme. To illustrate some description forms of the plant, different models of the same
technical system are presented in Figure 3. The technical system (a very small part of a
mechanical system) consists of a mass, a spring and a damping part and is modeled by the
interconnection of the model elements M, K, and D.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Modeling Languages for Continuous and Discrete Systems -
Peter Schwarz

©Encyclopedia of Life Support Systems (EOLSS)

Figure 3: Simple mechanical system

There are, principally, two ways to model such a system:

 - as a mathematical description, which may be formulated as
 * a text written in the style of a programming language
 * a block diagram, e.g. for the popular SIMULINK simulator
 - as a “physical” model with a structure similar to the structure of the original system
 * a mechanical network
 * an electrical network (constructed by using analogy relations)

In this example, the different model descriptions are illustrated with respect to continuous
systems. Similar possibilities exist for modeling discrete systems, e.g. graphically
described queuing systems and an equivalent textual GPSS model, or a state-chart model
of a digital controller which may be transformed into a textual VHDL (or Verilog) model.

In the context of the various modeling possibilities, the following notation is often used:

Behavioral model: The behavior of the whole system or of a component (an element) is
described by mathematical formulas. The notation may be carried out in the form of a
program written in a universal programming language (FORTRAN, C, C++), in a
simulator-specific description language (such as MAST for Saber), or in a standardized
modeling language (e.g. CSSL or VHDL-AMS).

Structural model: A complex model results from the interconnection of simpler
components. For these basic components simulator-internal models exist, the so-called
build-in models or “simulator primitives”. Such basic components are, e.g., resistors,
capacitors, linear transfer function blocks (e.g. a PID block), adders, multipliers, and

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Modeling Languages for Continuous and Discrete Systems -
Peter Schwarz

©Encyclopedia of Life Support Systems (EOLSS)

different types of signal sources. While older simulators only support this type of
modeling, modern simulators additionally permit a behavioral element description
formulated by the user.

A mixed structural and behavioral description is particularly efficient: the whole system
is modeled by the interconnection of subsystems which are modeled by behavioral
descriptions or, hierarchically, by the interconnection of other basic elements. Behavioral
modeling is the most comfortable way to include numerical models resulting from
identification procedures (see Identification of Nonlinear Systems and Identification of
Linear Systems in Time Domain).

In many cases the decomposition of a system model into the interconnection of simulator
primitives may be carried out easily. The widely used simulator MATLAB/SIMULINK
with its graphical input facilities and large libraries of control system block models or the
circuit simulator SPICE with its electronic component models are popular examples. But
in the case of modeling complicated phenomena it is more convenient to use
mathematical formulas and algorithms to describe the behavior of components. In these
applications it is necessary to formulate the model equations in a user-friendly form.
These requirements led to the development of modeling languages which can describe
the interconnection of components or subsystems as well as the individual model
equations of some components or subsystems.

2. Historical background

Modeling languages have a long history (see Modeling and Simulation of Dynamic
Systems, Simulation Software - Developments and Trends). CSMP, ACSL, the standard
CSSL, Modelica, Dymola, GPSS and SIMSCRIPT are only a few (but very important)
simulation languages for general continuous, discrete or hybrid (= continuous + discrete)
systems. Additional simulation languages are very popular in special application areas
like mechanics and electronics.

It was a feature of the first simulation languages that the user is responsible for the
notation of model equations in a “correct order”. “Simulation” was then reduced to a
step-by-step evaluation of these equations (as in all sequential programming languages).
“Correct order” means sorting the model equations according to the directed signal flow:

- ports of all elements (“blocks”) can be partitioned into input and output ports,
- there is a directed (or uni-directional) signal flow between the blocks and,

herefore, it is possible to calculate the new output signal ix of a block i by
using the output signals of preceding blocks -1, - 2, ,i i … which have been
already calculated, as input signals of the block i :

()021 ,...,, xxxfx iiii −−= (2)

In newer simulators these strong requirements have been relaxed: the input processor of
the simulator sorts the equations automatically. Nevertheless, up to now many simulators
(sometimes named “block-oriented simulators”) are based on the directed signal-flow

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Modeling Languages for Continuous and Discrete Systems -
Peter Schwarz

©Encyclopedia of Life Support Systems (EOLSS)

paradigm. The internal mathematical description is an explicit system of differential
equations (ODE):

(, ,)d t
dt

=
x f x u (3)

These simulators do not allow the formulation of “algebraic loops” in the modeling
language or need special language constructs to force iteration procedure for solving the
loop problem, see Simulation Software - Developments and Trends. The mathematical
equivalent of an algebraic loop is a linear system of algebraic equations

0 (, ,)t= g x u (4)

which can not be solved directly by the usual ODE solvers of (3). These problems may be
avoided by simulators which are constructed to solve the nonlinear DAE system (1a) with
implicit numerical solution algorithms. Similar problems exist in the simulation of
discrete systems: feedback loops with zero delay are not allowed in some simulators or
require special iteration algorithms in more powerful discrete-event simulators.

Most simulation languages are used for textual model description but often pre-compilers
generate these textual descriptions from graphical descriptions (e.g. block diagrams,
signal-flow graphs, bond graphs, networks or circuit diagrams, state charts, PETRI nets).
To combine textual and graphical model representations, some modern languages support
both.

3. A Modeling Approach

3.1 Physical background

In this contribution we will focus on the common modeling of the plant and the controller.
The main focus will be the description of continuous systems but we will also have a look
at discrete and hybrid systems too. Continuous systems may be classified into:

- conservative physical systems: their variables are flow quantities and difference

quantities, and compatibility constraints exist for these quantities;
- non-conservative physical systems: consisting of elements with inputs and outputs

and only one type of quantities.
-

Physical domain Flow quantity Difference quantity
electrical current voltage
mechanical-translational force velocity
mechanical-rotational torque angular velocity
pneumatic volume flow pressure
thermal heat flow temperature

Table 1: Flow and difference quantities in different physical domains

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Modeling Languages for Continuous and Discrete Systems -
Peter Schwarz

©Encyclopedia of Life Support Systems (EOLSS)

A flow quantity (through quantity or 1-quantity) is measured at one point of the physical
system (e.g. an electrical current or a hydraulic flow). A difference quantity (across
quantity or 2-quantity) is measured between two points, e.g. a mechanical displacement
or an electrical voltage. Table 1 shows some of the most important flow and difference
quantities occurring in physical systems.

The terms “conservative” and “non-conservative” are very often used in the field of
modeling technical systems, and must not be confused with the same term used in
theoretical physics for the description of dissipative and irreversible systems! The term
"conservative physical systems" is motivated in our context by the fact that compatibility
constraints for flow and difference quantities are valid. They arise from the
interconnection of components (or subsystems) and, therefore, the term “interconnective
constraints“ is sometimes used. In electrical systems, these constraints are the
well-known Kirchhoff's current law (KCL, node law) and voltage law (KVL, mesh law).
Similar conservation laws for flow and difference quantities are also valid in many other
physical domains.

This fact can be reflected in different classes of system models: conservative system
models with conservative signals (flow and difference signals) and non-conservative
systems (with non-conservative signals). We use the term "signal" as a model of all kinds
of physical quantities which are able to exchange energy or information between the
subsystems (in the context of VHDL, “signal” is there used in a very specific manner!).
We will use the term "network" to describe a system model consisting of elements,
connections between these elements, and conservative signals.

To emphasize the fact that these networks are models of physical systems in different
domains, sometimes the term "generalized Kirchhoffian network" is used. Bond graphs
(with effort and flow variables, see Modeling and Simulation of Dynamic Systems Using
Bond Graphs) are closely related to networks. Their construction leads more or less
directly to the formulation of an ODE system.

Non-conservative quantities are typical for controllers or digital signal-processing
devices. Block diagrams (see Figure 2) or signal-flow graphs are appropriate models of
these physical systems. Conservation laws do not exist on this level of abstraction.
(Signals in discrete systems could also be considered as “non-conservative” but this
notation is usually not applied in the discrete world.)

Languages for modeling complex heterogeneous systems have to fulfill a lot of
requirements which are not fully supported by most of the existing modeling languages:

- mixed-domain capability (mechanics, electronics, fluidics, …);
- continuous and discrete time variables;
- continuous and discrete value variables;
- conservative and non-conservative quantities;
- structure as well as behavior may be described;
- the structure of the model should be similar to the structure of the physical system;
- models may be structured hierarchically;
- the behavior of elements or subsystems may be defined by the user (e.g. by differential

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Modeling Languages for Continuous and Discrete Systems -
Peter Schwarz

©Encyclopedia of Life Support Systems (EOLSS)

equations or automata / finite state machines FSM).

Before presenting two modeling languages which fulfill these requirements, we will
discuss a very general physically-oriented modeling approach which is appropriate to
model the controller as well as the plant.

3.2 The Multi-Port Approach

The multi-port modeling approach is illustrated in Figure 4.

- The complete system is decomposed into subsystems, the so-called multi-ports. The

subsystems have ports (or terminals) to communicate with each other via their
interconnections. Signals are separated into external signals between the subsystems,
and internal signals within the subsystems.

- External signals may be conservative (flow signals e5, e6, e7, e8, e9; difference
signals e1, e2 in the example) or non-conservative (e3, e4).

- The behavior of subsystems only depends on their port signals (and sometimes on
some internal signals and their initial conditions).

Figure 4: Multi-port modeling of heterogeneous systems

This is a very general but effective approach and it corresponds to the intuitive way of
understanding complex systems: decomposing into more simple subsystems and
calculating the interaction between the subsystems.

In electrical circuit theory, multi-poles and multi-ports may be distinguished as such
subsystem models. But in our more general context this distinction between multi-poles
and multi-ports is not substantial and, therefore, we will only use the term multi-port.

Each subsystem can be substituted by other subsystems with the same terminal behavior
without any influence on the behavior of the rest of the system. The behavior of a
subsystem can be expressed:

- implicitly by the connection of other subsystems (or primitives on the lowest level):

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Modeling Languages for Continuous and Discrete Systems -
Peter Schwarz

©Encyclopedia of Life Support Systems (EOLSS)

hierarchical structural refinement,
- explicitly by a set of equations (e.g. nonlinear differential-algebraic equations):

"behavioral modeling" in a strict sense, or
- by a combination of both if the simulator has language constructs to formulate mixed

structural-behavioral descriptions.

The key problem in setting-up the system equations is the description of the terminal
behavior of the subsystems. All other equations are essentially constraints resulting from
the connection of the subsystems, especially the node and mesh law for flow and
difference signals on conservative terminals, and can be constructed automatically.

An external view of a multi-port and a system of associated model equations is shown in
Figure 5. Terminal signals of the same type are assembled into vectors (written in bold
types). The signals are vector-valued functions of time t . The terminal signals are divided
into the following categories:

1 2 in in, , ,v i a d difference, flow, and non-conservative signals (analog and digital) which

may be chosen independently as “input signals” to compute the response of the
multi-port,

2 1 out out, , ,v i a d difference, flow, and non-conservative signals (analog and digital)

which are dependent quantities and are calculated as “output signals”.

Figure 5: General multi-port description

In many cases it is impossible to compute the terminal behavior based on terminal signals
only. Subsystems may have internal states and, therefore, the introduction of a vector of
additional signals s is necessary. The terminal behavior is also determined by the values
of some parameters described by a parameter vector p . On very wide assumptions, the
terminal behavior of multi-ports can be given by the equations (E1)-(E5) in Figure 5.

Equations (E1)-(E4) are differential-algebraic equations (DAE). They can be solved by
numerical solution algorithms. The last equation (E5) is meant more symbolically: in
contrast to equations (E1)-(E4) for calculation of continuous variables which are
described very similarly in almost all modeling languages, the description of discrete
systems differs considerably in the different languages and is not always formulated in
the syntactical form of an “equation”. This equation (E5) is mostly solved by

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Modeling Languages for Continuous and Discrete Systems -
Peter Schwarz

©Encyclopedia of Life Support Systems (EOLSS)

discrete-event simulation algorithms which are very popular in general system simulation
and in digital electronic simulation. The combined solution of continuous and discrete
equations is known as hybrid simulation, analog-digital simulation, or mixed-signal
simulation.

This multi-port modeling approach is closely related to object-oriented modeling.
Unfortunately, there is no generally accepted concept of object-orientation in modeling
and simulation. From the author's point of view, the following classification is useful:

- Object-oriented modeling: the construction of strictly hierarchical, modular

structured models. This interpretation of object-oriented modeling was emphasized
by Cellier.

- Object-oriented simulation: each subsystem is considered as an object. Each object
has its own simulation algorithm (a "method"). All objects communicate via message
passing, coordinate their behavior, and so the simulation of the entire system is carried
out. A similar definition is: object-oriented simulation is the concurrent operation of
different simulators without a global controller or a master simulator.

- Object-oriented programming: the application of programming languages like C++
or Smalltalk (and, more general, a powerful method to design complex software
systems).

All these approaches exist independently from each other but they can be combined.
We will focus on object-oriented modeling. Modularity is guaranteed by the multi-port
approach because the interaction between the subsystems occurs only via the signals on
the terminals (the interface). There are no global variables, and side-effects are excluded.
Hierarchy is achieved by the structural refinement mentioned above and by the hierarchy
concepts of modeling languages used for behavioral modeling.

Other aspects of object-oriented modeling are:

- The structural similarity between a functional-oriented partitioning of the original

physical system and the decomposition of the system model into subsystem models.
- The subsystem models should be combined without detailed knowledge of the user

about the internal model realization (“plug and play” principle and information
hiding).

- The user has to give a topological description of the interconnection of the subsystems
and, eventually, to model the behavior of some components. Setting-up the equations
which describe the behavior of the whole system is the task of the simulator (its input
language processor), and not of the user.

- With the same interface description, different behavioral descriptions may be used to
obtain appropriate degrees of accuracy of the models and to carry out
multi-level-simulation (i.e. the simulation with models described on different levels
of abstraction).

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Modeling Languages for Continuous and Discrete Systems -
Peter Schwarz

©Encyclopedia of Life Support Systems (EOLSS)

-
-
-

TO ACCESS ALL THE 35 PAGES OF THIS CHAPTER,

Click here

Bibliography

Ashenden P. J., Peterson G. D., and Teegarden D. A. (2002). The System Designer’s Guide to VHDL-AMS,
906 pp., San Francisco: Morgan Kaufmann Publishers. [This book is one of the first comprehensive
presentations of VHDL-AMS.]

Atherton D. P., and Borne P. (1992). Concise Encyclopedia of Modeling and Simulation, 553 pp., Oxford:
Pergamon Press. [The book gives a global overview on continuous-value simulation: solution of
differential equations, Z-transform for sampled-data systems, identification]

Banks J. (Ed.) (1998). Handbook of Simulation, 861 pp., New York: Wiley. [This is a very comprehensive
overview of discrete simulators, simulation methods, and a short description of widely used simulators such
as GPSS/H, SIMSCRIPT and SIMPLE++.]

Breitenecker F., Ecker H., and Bausch-Gall I. (1993). Simulieren mit ACSL (in German), 410 pp.,
Braunschweig: Vieweg. See also: http://acslsim.com.

Berge J.-M., Levia Oz, and Rouillard J. (Hrg.) (since 1995). Current Issues in Electronic Modeling,
Dordrecht: Kluwer. [Many volumes comprising current developments in the area of modeling at all
abstraction levels (10 volumes so far).]

1. Model Generation in Electronic Design (1995), 173 pp..

2. Modeling in Analog Design (1995), 163 pp. [The roots of VHDL-AMS are presented here.]

3. High-Level System Modeling: Specification Languages (1995), 178 pp.

4. High-Level System Modeling: Specification and Design Methodologies (1996), 208 pp.

5. Hardware Component Modeling (1996), 151 pp.

6. Meta-Modeling: Performance and Information Modeling (1996), 209 pp.

7. Object-Oriented Modeling (1996), 168 pp.

8. HW/SW Co-Design and Co-Verification (1997), 184 pp.

9. Models in System Design (1997), 167 pp.

10. Analog and Mixed-Signal Hardware Description Languages (1997), 178 pp.

Cellier F. E. (1991). Continuous System Modeling, 803 pp., New York/Berlin: Springer. [In this very
inspiring book the basic concepts in modeling and simulation of continuous systems together with
fundamental ideas of object-oriented modeling are presented.]

Christen E., and Bakalar K. (1999). VHDL-AMS - A Hardware Description Language for analog and
mixed-signal applications. IEEE Trans. CAS-II, 46, 1263-1272. [This paper describes the rationales of
VHDL-AMS and some of the basic language constructs.]

Elmqvist H., Mattsson S.E., and Olsson H. (2002). New methods for hardware-in-the-loop simulation of
stiff models. Proc. Modelica'2002, Oberpfaffenhofen, Germany, 59-64.

(download from http://www.Modelica.org/Conference2002/papers.shtml). [This conference paper presents
an approach to real-time simulation in the context of the Modelica language.]

Fritzson P. (2004). Principles of Object-Oriented Modeling and Simulation with Modelica 2.1, 897 pp.,

http://www.eolss.net/Eolss-sampleAllChapter.aspx
https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-43-07-06

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Modeling Languages for Continuous and Discrete Systems -
Peter Schwarz

©Encyclopedia of Life Support Systems (EOLSS)

New York: Wiley. [This book is currently the most comprehensive introduction to Modelica.]

Groetker, T., Liao, Stan; Martin, Grant, and Swan, S (2002). System Design with System C, 233 pp., Boston:
Kluwer.

Haase J. (2003). Rules for analog and mixed-signal VHDL-AMS modeling. Proc. Forum on Design and
Languages (FDL’03), Frankfurt/Main, Germany, 98-107. [Some typical modeling errors related to the
numerical solution algorithms are discussed, especially the definition of simulation problems with correct
syntax but without a solution.]

Heinkel U., Padeffke M., Haas W., Buerner T., Braisz H., Gentner T., and Grassmann A. (2000). The
VHDL Reference, 438 pp., Chichester: Wiley. [This is a “cook-book” presentation of VHDL and a short
introduction to VHDL-AMS.]

Huss S.A (2001). Model Engineering in Mixed-Signal Circuit Design, 180 pp., Boston: Kluwer. [In this
book a guide to generating accurate behavioral models in VHDL-AMS is embedded into a general
top-down design methodology.]

Karnopp D. C., Margolis D. L., and Rosenberg R. C. (1990). System Dynamics: A Unified Approach, 528
pp., New York: Wiley. [This book gives a fascinating overview on modeling dynamic systems with bond
graphs.]

Koenig H. E., and Blackwell W. A. (1961). Electromechanical System Theory, 520 pp., New York:
McGraw-Hill. [This book is a “classical” introduction to analogies and network modeling in different
physical domains.]

Kasper R., and Koch W. (1995). Object-oriented behavioral modelling of mechatronic systems. Proc. 3rd
Conf. Mechatronics and Robotics, Paderborn, Germany, 70-84.

Mann H. (1995). Multipole and multiport approach to mixed energy-domain systems. Proc. 1995 IEEE Int.
Symp. on Circuits and Systems, Seattle, 676-679. See also http://icosym.cvut.cz/course/.

Mattsson S.E., Otter M., and Hilding E. (1999). Modelica Hybrid Modeling and Efficient Simulation. Proc.
38th IEEE Conference on Decision and Control CDC'99, Phoenix, Arizona, USA, 3502-3507.

Mueller W., Rosenstiel W., and Ruf W. (2003). SystemC: Methodologies and Applications, 362 pp.,
Boston: Kluwer. [This books presents a new modeling language SystemC which is very effective in
high-level modeling of hardware/software systems and will be extended to mixed-signal modeling and
simulation.]

Navabi Z. (1993). VHDL - Analysis and Modeling of Digital Systems, 389 pp., New York: McGraw-Hill.
[This is an application oriented textbook on VHDL and the discrete-event simulation principle, but presents
also interesting examples of automata and finite-state machine descriptions based on VHDL.]

Neul R. et al. (1998). A modeling approach to include mechanical microsystem components into system
simulation. Paris: Proc. Design, Automation & Test Conf. (DATE’98), 510-517.

Pantelides C. (1998). The Consistent Initialization of Differential-Algebraic Systems. SIAM Journal of
Scientific and Statistical Computing, 213-231.

Reinschke K., and Schwarz P. (1976). Verfahren zur rechnergestuetzten Analyse linearer Netzwerke (in
German), 335 pp., Berlin: Akademie-Verlag. [In this book different methods for formulating the equations
describing generalized networks are presented.]

Remelhe M.A.P. (2002). Combining Discrete Event Models and Modelica – General Thoughts and a
Special Modeling Environment. Proc Conf. Modelica'2002, Oberpfaffenhofen,
203-207.(http://www.Modelica.org/Conference2002/papers.shtml).

Rumbaugh J., Blaha, M., and Premerlani, W. (1991). Object-Oriented Modeling and Design, 512 pp.,
Englewood Cliffs: Prentice Hall. [A “classical” book on object-oriented programming, more focused on
software design than on physical modeling.]

Saleh R., Jou S.-J., and Newton A. R. (1994). Mixed-Mode Simulation and Analog Multilevel Simulation,
313 pp., Dordrecht: Kluwer. [Basic ideas of analog as well as mixed-signal simulation, especially in
electronics, are presented in this book.]

Schoen J.M. (Edt.) (1992). Performance and Fault Modeling with VHDL, 415 pp., Englewood Cliffs:

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Modeling Languages for Continuous and Discrete Systems -
Peter Schwarz

©Encyclopedia of Life Support Systems (EOLSS)

Prentice Hall. [This book presents some unconventional applications of VHDL in general system
simulation.]

Schwarz P. (2000). Physically oriented modeling of heterogeneous systems. Mathematics and Computers
in Simulation 53, 333-344.

Schwarz P., and Haase J. (1998). Behavioral modeling of complex heterogeneous microsystems, Lausanne:
Proc. 1st Intern. Forum on Design Languages (FDL’98), 53-62, or in: Mermet, J. (Edt.) (2001). Electronic
chips & Systems Design Languages, 314 pp., Dordrecht: Kluwer 17-30. [The paper describes the
application of modeling languages in micromechanical systems simulation.]

Tiller M. (2001). Introduction to Physical Modeling with Modelica, 366 pp., Dordrecht: Kluwer. [This was
the first Modelica textbook and contains a presentation of basic ideas and many application examples.]

Tonti E. (1976). The reason for analogies between physical theories. Appl. Math. Modelling 1, 37-50. [This
is a “classical” paper on modeling in different physical domains.]

Villar, E. and Mermet, J. (Editors) (2003). System Specification & Design Languages, 355 pp., Dordrecht,
Kluwer. [Some papers in this book describe the application of different mixed-signal modeling languages:
Modelica, VHDL-AMS and SystemC-AMS as well as mixed-signal simulation algorithms.]

Voigt P., and Wachutka G. (1998). Electro-fluidic microsystem modeling based on Kirchhoffian network
theory. Sensor and Actuators A 66 (1998)1-3, 6-14.

Wachutka G. (1995). Tailored modeling: a way to the ‘virtual microtransducer fab’ ? Sensor and Actuators
A 46-47 (1995), 603-612. [The concept of (generalized) Kirchhoffian networks is discussed in these two
papers.]

Wellstead P.E. (1979). Introduction to Physical System Modelling, 288 pp., London: Academic Press. [This
book describes the modeling of physical systems with networks and bond graphs.]

Instead of publications, Internet site addresses should be used as references to simulators or other tools as
well as to standardized modeling languages. Owing to the rapid development of such software (and the
occasionally rapidly changing tool names and trade marks), the best way to up-to-date information is to
check the homepages of the software providers: Simulators which are very useful in control system design
are described on the following web sites:

http://www.analogy.com [Saber and modeling language MAST]

http://www.ilogix.com [Graphically oriented simulation environment Statemate]

http://www.cadence.com [Mixed-signal simulators, VHDL-AMS]

http://www.dynasim.se [Dymola, for Modelica simulation]

http://www.iti.de [Mechatronics and control system simulator ITI-SIM]

http://www.mathworks.com [Control system design and simulation environment MATLAB/SIMULINK]

http://www.ni.com/matrixx/ [Control system design and simulation environment MATRIXx]

http://www.mentor.org [Mixed-signal simulators, VHDL-AMS]

http://www.ansoft.com/products/em/simplorer/ [Mixed-signal simulator for physical systems,
VHDL-AMS]

http://www.synopsys.com/ [Mixed-signal simulators, VHDL-AMS, Verilog-AMS]

Modelica: http://www.modelica.org/ . [Many links to Modelica-related publications and the Language
Specification.]

VHDL-AMS (VHDL – Analog and Mixed Signal Extensions): http://www.vhdl.org/analog/ [This is the
official website of the IEEE standardization working group.]

Biographical Sketch

Peter Schwarz received the diploma and the Ph.D. degree in electrical engineering from the Dresden
University of Technology in 1964 and 1967, respectively. He worked in the Robotron Computer Company

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Modeling Languages for Continuous and Discrete Systems -
Peter Schwarz

©Encyclopedia of Life Support Systems (EOLSS)

in Dresden and was responsible for research and development in a CAD group. From 1982 to 1991 he was
the leader of the research group "Simulation" at the Central Institute for Cybernetics and Information
Processes of the Academy of Sciences in Dresden. He was engaged in the development of a multi-level,
mixed-signal simulator KOSIM which was used in industry and research institutes at that time. He received
the Habilitation degree from the Dresden University of Technology in 1989. Since 1992 he has been
working with the Fraunhofer Institute for Integrated Circuits, Design Automation Division EAS Dresden.
He is the head of the Modeling and Simulation department with about 30 engineers, mathematicians, and
physicists. His special interests are now multi-level, mixed-signal modeling and simulation of complex
heterogeneous systems, web-based simulation and optimization, and knowledge transfer in life-long
learning. Application areas are integrated circuit design, micro-electrical-mechanical systems (MEMS),
telecommunications, mechatronics, and automation systems. He is member of IEEE and VDE.

