
UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Simulation Software – Development and Trends - F.
Breitenecker and I. Troch

©Encyclopedia of Life Support Systems (EOLSS)

SIMULATION SOFTWARE – DEVELOPMENT AND TRENDS

F. Breitenecker and I. Troch
Vienna University of TechnologyVienna, Austria

Keywords: Simulation, Algebraic loop, Block diagram, CACSD tool, Computer
experiments, Continuous simulation, CSSL-Standard, Differential-algebraic equation,
Differential equation, Discrete simulation, Experimental frame, Hybrid simulation,
Identification, Implicit model, Integration algorithms, Model frame, Modeling, ODE
solver, Random number generator, Simulation engine, Simulation environments,
Simulation software, Simulation system, Simulators, State, State vector, Validation,
Verification

Contents

1. Introduction
2. Continuous Roots of Simulation
3. CSSL Structure in Continuous Simulation
3.1. Structure of the Model Frame
3.2. Requirements for the Experimental Frame
4. Numerical Algorithms in Simulation Systems
5. Simulation Software and CACSD Tools
6. Analysis Methods in Simulation Systems
7. Implicit Models – Algebraic Loops – Differential-Algebraic Equations
8. Discrete Elements in Continuous Modeling and Simulation
9. Hybrid modeling and simulation – Combined Modeling and Simulation
10. Simulation in Specific Domains
11. Developments beyond CSSL
12. Discrete Event Simulation
12.1. Statistic Roots and Events
12.2. Modeling Concepts in Discrete Simulation
12.3. Random Number Generators
13. Object-oriented Approaches to Modeling and Simulation
14. Choice and Comparison of Simulation Software
14.1. Hints for Simulator Choice
14.2. Comparison of Simulation Tools
15. Conclusion
Glossary
Bibliography
Biographical Sketches

Summary

This contribution presents development and trends of simulation software, with emphasis
on control systems, robotics, and automation. Simulation emerged in the 1960’ in order to
be able to analyze nonlinear dynamic system and to synthesize nonlinear control systems,
and in order to investigate complex automation systems. Since that time simulation as
problem solving tool has been developed towards the third pillar of science (beneath

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Simulation Software – Development and Trends - F.
Breitenecker and I. Troch

©Encyclopedia of Life Support Systems (EOLSS)

theory and experiment), and in parallel simulation software has been developed further on.
The paper first follows the roots from analog computation and control system simulation,
followed by the introduction of the CSSL standard for simulation languages. The next
chapter is devoted to numerical algorithms for solving differential equations, which build
up the simulation engine of a simulator.

Of interest is the special relation between simulation software tools and computer aided
control system design tools (CACSD tools), discussed in the following chapter. Recent
developments are discussed in next chapters: advanced analysis methods in simulators,
simulation with implicit models, hybrid simulation, simulation in specific domains, and
hybrid and combined modeling and simulation.

The second part of the contribution deals first with discrete simulation software for e.g.
automation of manufacturing systems and with object-oriented approaches and software
implementation of simulators, which allow real hybrid simulation, and ends with an
overview on choice and comparison of simulation software.

1. Introduction

Simulation software plays a major role in analysis of nonlinear control systems and
complex automation systems. Simulation software, simulation languages, simulators,
simulation systems, and simulation environments is computer software intended for
simulation of dynamic systems at a higher level than programming languages can do. The
different terms used reflect more or less the development of this special kind of software,
and unfortunately, in the literature these terms are very often mixed.

A “simulation” is a method for solving a problem in dynamical systems, which
investigates instead of the real system a model of the system. The method “simulation”
itself consists of several steps or tasks, which are: (1) formulation of the problem, (2) data
collection, (3) mathematical modeling, (4) computer implementation, (5) model
validation, (6) model identification, (7) experiments with the model, (8) representation of
results, and (9) interpretation of results.

Thereby the experiments with the model (7) are usually investigations in the time domain,
as the system under investigation is dynamic. The ideal simulation system should support
all these steps, but up to now no simulation system supports all steps sufficiently.
Roughly speaking, a simulation language emphasizes on implementation and partly on
experimenting and modeling, “simulation software” is a little bit more general supporting
implementation and experimenting and partly modeling, a simulation system additionally
offers help for data gathering and data pre-processing, for validation and for identification,
and for data post-processing (result representation) - a simulation system may consist of
several parts.

Finally, a simulation environment is an integrated software environment combining the
various parts of a simulation system, with database interface, increased support for
modeling. The term “simulator” does not fit in this pattern. In common understanding,
previously it was used for a hardware-oriented simulator, like a flight simulator or any
other training simulator, nowadays it stands more or less for an abbreviation of all other

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Simulation Software – Development and Trends - F.
Breitenecker and I. Troch

©Encyclopedia of Life Support Systems (EOLSS)

terms.

Almost everywhere one meets the distinction between continuous simulation and discrete
simulation. First, again we are faced with a veritable tower of Babylon. Roughly speaking,
continuous modeling and simulation is based on time domain analysis of nonlinear
system described by ODEs using ODE solvers, whereas discrete modeling and simulation
is based on time domain analysis of queuing systems described by process flow using
time event handling.

But in continuous modeling and simulation we meet discrete elements, like discrete
controllers described by difference equations, or hybrid systems, where at some times the
states change in discrete patterns. As discussed later on, the basic algorithm of a
continuous simulator as well as of a discrete simulator is an event handling algorithm
with more or less complicated state changes in the events. The distinction of and the
difference in discrete and continuous modeling is caused by the sometimes very different
education of people in discrete and continuous simulation.

2. Continuous Roots of Simulation

The classical analysis of dynamic systems, especially of control systems, consists of
eigenvalue analysis of the linearized mathematical model. As systems became more and
more complex, this linear analysis was not sufficient, and the need of analyzing the
nonlinear system became evident. It became necessary to analyze the model in the time
domain - by means of a simulator. The first simulators were purely hardware; they
worked with the principle of analogy.

The mathematical model of the system was mimicked by a physical device that obeys the
equations. The mechanical differential analyzer developed at MIT was the first hardware
simulator for dynamical systems. States were represented by angles; integration was
performed by the ball and disc integrator. In 1947, Ragazzini demonstrated that this
simulation could be done electronically. States and variables were represented as voltages
in an electronic circuit. So the analogue computers were borne, which were widely used
until the 1980s.

Simulation with an analog computer was a time-consuming: choosing proper state
variables (represented by voltages), creating the circuit diagram from the equations (very
similar the control diagrams), scaling the states, patching the circuit, and recording the
simulation output. In the late days of analog simulation, there were attempts to support
this procedure by software: digital scaling programs, automatic patching devices driven
by a block-oriented scaled analog model description, and prototype programs for
transforming the equations into the block-oriented description.

Furthermore, a digital computer was coupled with the analogue simulator (called hybrid
simulator), in order to control, perform and document experiments, and also to model
digital control. In parallel, as soon as digital computers appeared, it was tried to use them
for simulation. The basic idea was to simulate the analogue computer at the digital
computer. Models could be entered in the form of analog computer diagrams
(block-oriented description) or control loops, and previous working practices could be

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Simulation Software – Development and Trends - F.
Breitenecker and I. Troch

©Encyclopedia of Life Support Systems (EOLSS)

used. In the late sixties there were about twenty different programs available, called
simulation languages or simple “simulators” (because of the analogue heritage, e.g.
MIMIC, DYNASAR, DSL, and CSMP.

Also at European Universities projects for "digital" simulators were started, based on the
experience with analog and hybrid simulation. The HYBSYS project at Vienna
University of Technology started as automatic patch system for an analog simulator. Next
step was to replace the analog computer by a library of ODE solvers, to extend the model
description appropriately, and to incorporate a runtime environment (simulation system
HYBSYS). HYBSYS continued with a submodel structure similar to an object-oriented
structure, which was very modern for those times. Further developments of HYBSYS
partly implemented the Model- Method – Experiment – Concept – for details see later,
and a parallelization concept.

3. CSSL Structure in Continuous Simulation

Simulation (i.e. time domain analysis) supported various developments in engineering
and other areas, and simulation groups and societies were founded. One main effort of
such groups was to standardize digital simulation programs and to work with a new basis:
not any longer simulating the analog computer, but a self standing structure for
simulation systems.

There were some unsuccessful attempts, but in 1968 the CSSL Standard (The CSSL
Report commissioned by the Simulation Council Inc - Sci) became the milestone in the
development: it unified the concepts and language structures of the available simulation
programs, it defined a structure for the model, and it describes minimal features for a
runtime environment.

The CSSL standard suggests structures and features for a model frame and for an
experimental frame. This distinction is based on Zeigler’s concept of a strict separation of
these two frames:

• The model frame has to provide a comfortable way for model description - on a
much higher level than within a programming language

• The experimental frame should allow experimenting with the implemented model,
either interactively, or with a sequence of batch commands

Model frame and experimental frame are the user interfaces for the heart of the simulation
system, for the simulator kernel or simulation engine. The simulation engine drives the
calculations in the time domain:

• it is started from commands of the model frame,
• it first initializes parameters and states (calculations may be parts of the model

frame),
• then it calls and controls an ODE solver, which itself evaluates the model

equations (given in the dynamic part of the model frame) and in parallel data are
logged,

• and at the end it does final calculations and data recording (calculations may be

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Simulation Software – Development and Trends - F.
Breitenecker and I. Troch

©Encyclopedia of Life Support Systems (EOLSS)

parts of the model frame)

This basic structure of a simulator - due to CSSL standard – is illustrated in Figure 1, an
extended structure with service of discrete elements (see later) is given in Figure 5.

Figure 1: Basic structure of a simulation language due to CSSL standard

3.1. Structure of the Model Frame

In principle, in CSSL’ model frame, a system can be described in three different ways, as
an interconnection of blocks as in MIDAS, DYNASAR, ACSL Graphic Modeler, and
SIMULINK, by mathematical expressions as in MIMIC, ESL, DSL, and ACSL, and by
conventional programming constructs as in FORTRAN or C.

Mathematical basis is the state space description

0 0() ((), (), ,), ()t t t t t= =x f x u p x x

Any kind of textual model formulation, of graphical blocks or structured mathematical
description or host languages constructs must be transformed to an internal state equation
of the structure given above, so that the vector of derivatives (, , ,)tf x u p can be calculated
for a certain time instant ((), (), ,)i i i i it t t=f f x u p . This vector of derivates is fed into an
ODE solver in order to calculate a state update 1 (. ,)i i i h+ = Φx x f , h stepsize (all
controlled by the simulation engine). Essential is CSSL’s concept of SECTIONs or
REGIONs, giving a certain structure to the model description. First, CSSL defines a set of
operators like INTEG which formulates parts of the state space description for the system
governing ODEs (and which emulates the integrator of the analog computer). Other
memory operators like DELAY for time delays and HYST for hysteresis, TABLE
functions for generating (technical) tables, and transfer functions of arbitrary order
complete dynamic modeling parts (strongly influenced by requirements for control
systems). The dynamic model description builds up the DYNAMIC or DERIVATIVE
section of the model description, for simple models the only one section. Automatic
sorting of the equations (blocks) to proper order of the calculation is another very
essential feature of CSSL. The model can be formulated in arbitrary sequence – allowing

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Simulation Software – Development and Trends - F.
Breitenecker and I. Troch

©Encyclopedia of Life Support Systems (EOLSS)

structured parts, the translator puts the statements in the proper order for calculating the
derivative vector. Furthermore, the user can define new block types by means of a
MACRO definition. The macro feature is a predecessor of object-oriented modeling: the
macro definition is similar to a class definition; the macro invocation is the instantiation
of an object of the class defined. The CSSL standard also extends the classical model
description in state space form, aiming for better structured modeling and more efficient
implementations. Sometimes together with the state space equations we also meet
parameter equations, parameter dependent initial values, and calculations with the
terminal values (e.g. for cost functions in an optimization):

0, (, ()) , (, ())ft E t= =C(p) = 0 I p x 0 p x 0

In principle, all this calculations could be done in the dynamic model description, but then
they are calculated at each evaluation of the derivative vector of the ODE solver –
although they have to be calculated only once.

In the following, a non-structured and structured model description for the pendulum is
given. The well known equations (length l , mass m , damping coefficient d) are

0 0() sin , (0) , (0)g dt
l m n

πϕ ϕ ϕ ϕ ϕ ϕ ϕ= − − = = =

where now parameter equations are added (in parentheses the intrinsic parameter
equations of the model are given):

deg
0 , 2 , () () (,)

180f f
g dd D t t a b

n l m
π πϕ ϕ ϕ= = = = =

In ACSL (Advanced Continuous Simulation Language; Mitchell and Gauthier 1976,
1981) a model description can be formulated structured and non-structured. In table 1 the
non-structured model is given:

PROGRAM math_pendulum
! --- unstructured CSSL model

! --- model parameters

 CONSTANT m=1, l=1, d=0.3 ! kg, m, N*s/m
 CONSTANT g=9.81, pi=3.141592653
 CONSTANT dphi0=0, phi0=0.78539816 !
! --- model equations

 phi0=pi/4
 phi = integ (dphi, phi0)
 dphi = integ (-(g/l)*sin(phi)-(d/m)*dphi,
dphi0)
 phi_grad = phi*180/pi
END ! of Program

Table 1: Non-structured textual model description

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Simulation Software – Development and Trends - F.
Breitenecker and I. Troch

©Encyclopedia of Life Support Systems (EOLSS)

This unstructured model description given above is translated totally into the derivative
vector, so that initial value and final value are calculated at each evaluation of the
derivative vector.

The following structured model description in ACSL generates more efficient code: only
the DERIVATIVE section is translated into the derivative vector function, while
INITIAL section and TERMINAL section are translated into functions called
immediately before and after the ODE solver, as shown in table 2.

PROGRAM math_pendulum
! --- structured CSSL model ------------------------
! --- model parameters -----------------------------
 CONSTANT m=1, l=1, d=0.3 ! kg, m, N*s/m
 CONSTANT g=9.81, pi=3.141592653; dphi0=0, pintel=2
INITIAL ! calculation with parameters--------------
 phi0 = pi/pintel; a = g/l; b = d/m
END ! of INITIAL ----------------------------------
 DERIVATIVE ! ODE model -------------------------
 phi = integ (dphi, phi0)
 dphi = integ (-gdl*sin(phi) - ddm*dphi, dphi0)
 END ! of DERIVATIVE ----------------------------
TERMINAL ! calculations with final states ---------
 phi_grad = phi*180/pi
END ! of TERMINAL ---------------------------------
END ! of Program ------------------------------------

Table 2: Structured textual model description

With graphical window systems, graphical model descriptions became important. Here
the roots go back on the one side to analog computation using patching diagrams, and on
the other side to control techniques with signal flow diagrams.

Consequently, simulation systems offered this kind of model description, either as
stand-alone model frame, or as extension of a textual model frame. The following picture
shows the model for the pendulum using SIMULINK, one of the most used graphical
simulators.

But in the graphical SIMULINK model (Figure 2) one disadvantage appears: the
graphical structure consisting of directed dynamic signal flow allows almost no structure
for dynamic calculations and static calculations; e. g. one finds the calculation of the final
value and the calculation of the dependent parameters as dynamic block, which is
evaluated at each call of the ODE solver (except the calculations for the initial value).

From 2000 on, graphical model frames were enriched by structures discussed before; in
SIMULINK, triggered subsystems can be used for such purposes (Figure 3, possible
triggered subsystems shown in subwindow).

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Simulation Software – Development and Trends - F.
Breitenecker and I. Troch

©Encyclopedia of Life Support Systems (EOLSS)

Figure 2: Graphical model description of pendulum in SIMULINK

3.2. Requirements for the Experimental Frame

In principle, the experimental frame has to set parameters, it has to control and perform
the “simulation” of the model (the solution of the system governing ODEs), and it should
support documentation of the results. In the CSSL standard, minimal requirements for
runtime environment are given as follows:

• availability of certain ODE Solvers (Euler, RK4, RK-Fehlberg, and Gear or BDF
algorithms for stiff systems

• possibility for change of parameters, eventually also calculations with parameters,
• and documentation of results in a plotting system

From 1968 on all simulation languages tried to meet the CSSL standard. But the
implementations were and are different. First, the structure with sections or regions can
be given explicitly by definition of this section, semi-implicitly by type declarations of all
variables, and full implicitly by recognition of the translator (which must run at last a
two-pass parser). For instance, SIMNON defines parameters and states, so that for sorting
the section structure is determined; for the pendulum example, these definitions are:

 parameter m, l,
g, …….
 state phi,
phidot
 derivative
dphi, ddphi

These definitions determine the structure of the equations, but they also show a (minor)
problem: a state cannot be a derivative, and vice versa; in principle, dphi is both, so it has
to be renamed, e.g. as state with phidot.

There are many different ways to implement a simulation system. In a pure interpreter

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Simulation Software – Development and Trends - F.
Breitenecker and I. Troch

©Encyclopedia of Life Support Systems (EOLSS)

implementation, first the runtime system – an interpreter – recognizes the commands, and
starts the simulation engine - in most cases the start of the simulation run in the time
domain. The engine (sometimes compiled, sometimes working in interpreter mode) calls
an interpreter algorithm for solving the ODE, which itself has to calculate the derivative
vector by interpretation of the sorted equations. In a pure compiled implementation, first a
translator transforms the model description into a host language resulting in a function
call for the derivative vector (and for additional functions). A compiled library system
(with simulation engine, with ODE solvers, with parameter change facilities, and with a
plotting system) is linked to this compiled model, which then can be handled from a
compiled runtime environment. One meets various mixtures of compiled and interpreted
implementations, as well as on the one side really strict distinctions of model frame and
experimental frame, and on the other hand definitions of model frame and experimental
frame in a common deck for compilation. Clearly, there are advantages and disadvantages
in all kinds of implementation. Generally holds: the more compiled, the faster, but the
more inflexible for changes, and the more interpreted, the slower, but the more flexible
for changes. In addition to modeling features, CSSL also suggests statements for
selecting integration routines and their parameters, for controlling the simulation, and for
documentation of results.

4. Numerical Algorithms in Simulation Systems

With the first digital computers the development of numerical software started. This
software was implemented in libraries, written usually in FORTRAN. The first numerical
libraries concentrated on linear analysis and linear algebra, like the BLAS library. The
Basic Linear Algebra System was mainly used in control applications, and in applied
mathematics. Soon libraries with other algorithms became available, amongst them
algorithms for solving ODE solving. Most of these algorithms replace the differential
quotient by difference quotients. Euler’s method is based on approximation of the
derivative by a first order difference. There are more efficient techniques such as
Runge-Kutta and multi-step methods. These methods were well known when digital
simulators emerged in the 1960s. This field of numerical mathematics experienced a
revival because of the impact of digital computers. Important contributions were given to
stability of difference approximations. Automatic step length adjustment was another
important contribution.

Systems with both fast and slow modes (stiff systems) posed a particular difficulty for
explicit ODE solvers. It is necessary to choose a very short step length to have numerical
stability, which gives a very slow simulation and results in numerical errors for the slow
model parts. Here implicit integration schemes offer a help, allowing a bigger stepsize.
Numerical solvers for this purpose appeared in 1970. It turned out, that implicit solvers
can also handle implicit model equations and model equations with algebraic constraints,
so that the conquest for the best DAE (Differential-Algebraic Equations) solvers started
(for comments on implementation see section on implicit model descriptions). Implicit
model equations very often occur e.g. in modeling robots (if inversion of the mass matrix
is inappropriate or impossible).Nowadays, FORTRAN has lost dominance, user find
libraries with ODE and DAE solvers in C, C++, Java, etc. Standardized libraries like
IMSL and NAG library offer more then one host language. The kernel of a simulation
system makes use of these ODE and DAE solvers.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Simulation Software – Development and Trends - F.
Breitenecker and I. Troch

©Encyclopedia of Life Support Systems (EOLSS)

5. Simulation Software and CACSD Tools

The fore-mentioned BLAS library was also the basis of another type of software, of the
so-called CACSD tools (Computer-Aided Control System Design). The most prominent
tool is the MATLAB system with all its toolboxes. MATLAB itself offers ODE solvers -
to be called from the MATLAB environment - , which frequently must call the evaluation
of the derivative vector – to be supplied as function in an m-file. Here MATLAB does not
fulfill the requirements for a simulator, because the model description, the m-file with the
derivative vector, follows classic programming rules (no sorting, fixed state space, etc.) –
consequently one cannot call MATLAB a simulator. But after the first MATLAB
versions a special toolbox for simulation was released, the SIMULINK system
(previously called SIMULAB). SIMULINK is a model frame for graphical model
representation, which on the one side offers a simple experimental frame by pull-down
menus in the model layout, but which on the other side is driven by MATLAB, the up to
now most powerful experimental frame. SIMULINK can be seen as simulator, with
graphical model frame and a small experimental frame consisting of pop-down menus.
SIMULINK / MATLAB can be seen as powerful simulator with the graphical model
frame SIMULINK (without use of the pop-down menus for experimentation), and with
the very powerful experimental frame MATLAB (without direct MATLAB calls to ODE
solvers).

In general, graphical model representations of the SIMULINK type shown in Figure 2
were used to represent models in terms of integrators, adders and potentiometers in the
early days of analog simulation and to represent control loops and transfer functions.
However, graphical modeling was not widely used until modern work stations and the PC
with raster graphics became generally available. Boeing’s simulator EASY5 from 1976
was provided with a graphical user interface. Not only MATLAB, but also the other
matrix environments MATRIXX and CTRL_C were provided with graphical modeling
tools: SystemBuild, integrated in MATRIXX, and SYSTEM-C integrated in CTRL-C
appeared in 1984, whereby the first versions made use of the graphical system GEM, and
not of the WINDOWS environment (at that time really GEM was much more stable than
WINDOS 1.x). MATLAB started SIMULINK in 1991, implemented in WINDOWS in
1991, interestingly first called SIMULAB.

These three CACSD systems became simulation systems by means of the graphical
model frames with weak structures. But neither MATLAB nor MATRIXX and
CNTRL-C offer better structured textual model frames, so that up to now MATLAB /
SIMULINK is a simulator with relatively weakly structured model frame, but with the
most powerful experimental frame, with MATLAB itself (from MATLAB’s point of
view simulation is only one of the analysis methods offered). The MATLAB /
SIMULINK system dominates clearly the market for continuous simulation, many
simulators of the 1980s and 1990s have vanished, and competitors could only survive by
concentrating on special areas, e.g. special model frames. But the analog computing
paradigm with its requirement of explicit state models (ODE) is a fundamental limitation
of block diagram modeling. The blocks have a unidirectional data flow from inputs to
outputs. A severe consequence is that it is cumbersome to build physics based model
libraries in the block diagram languages. Despite all of these disadvantages in
SIMULINK, the MATLAB / SIMULINK system became the most used simulator –

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Simulation Software – Development and Trends - F.
Breitenecker and I. Troch

©Encyclopedia of Life Support Systems (EOLSS)

because of the very powerful experimental frame MATLAB (see also next chapter).
Indeed, up to now the experimental frames of many simulators must be called very poor.

-
-
-

TO ACCESS ALL THE 47 PAGES OF THIS CHAPTER,

Click here

Bibliography

Ascher U.M. and Petzold L. R. (1999). Computer Methods for Ordinary Differential Equations and
Differential-Algebraic Equations. Philadelphia: SIAM. [Classical introduction to numerical algorithms for
solving differential equations]

Banks J., (Ed). (1998): Handbook of Simulation. New York: John Wiley and Sons. [State-of-the-art
handbook for discrete modeling and simulation]

Bergin Jr. T. J. and Gibson R. G. (Eds) (1996): History of Programming Languages. New York: ACM
Press. [Nice overview on history of programming languages]

Breitenecker F. (1992).Models, methods and experiments - A new structure for simulation systems.
Mathematics and Computers in Simulation 34, 1 – 30. Amsterdam: North Holland. [Introduction to
Model-Method-Experiment - concept]

Breitenecker F. and Husinsky I. (Eds.) (1992 - now). SNE – Simulation News Europe, Vienna: ARGESIM
Publisher. [This journal publishes the ARGESIM Comparisons on Simulation Techniques and Simulation
Tools and reports about European Projects in modeling and Simulation]

Brenan, K. E., S. L. Campbell, and L. R. Petzold (1989). Numerical Solution of Initial-Value Problems in
Differential-Algebraic Equations. Amsterdam: North-Holland. [This is a classical survey on algorithms for
solving differential-algebraic equations]

Cellier F. E. (1991): Continuous System Modeling. New York: Springer. [Up to now a state-of-the-art
summary about continuous system modeling]

Forrester J. W. (1961). Industrial Dynamics. Cambridge, MA: M.I.T. Press. [The book on System
Dynamics]

Hairer E., Norsett S., and Wanner G. (1987). Solving Ordinary Differential Equations I - Nonstiff Problems.
Computational Mathematics No. 8. Berlin: Springer. [This book introduces into classical ODE solvers]

Hairer E. and Wanner G. (1991). Solving Ordinary Differential Equations II - Stiff and
Differential-Algebraic Problems. Computational Mathematics No. 14. Berlin: Springer. [This book
introduces into stiff DAE solvers]

Hellekalek P. (1998). Good random number generators are (not so) easy to find. Mathematics and
Computers in Simulation 46, 485-505. Amsterdam: Elsevier. [Informative survey paper on random number
generators]

Jackson A. S. (1960). Analog Computation. New York: McGraw-Hill. [Standard book on analog
computation, worth reading dut to historical development]

Jansson B. (1966). Random Number Generators. Stockholm:Victor Pettersons. [Book on first
developments of pseudo random number generators]

Karnopp D. C. and Rosenberg R. C. (1968): Analysis and Simulation of Multiport Systems - The Bond
Graph Approach to Physical System Dynamics. Cambridge, MA: MIT Press. [The authors, known as
fathers of bond graphs, introduce into the multiport systems concept, or bond graph concept, resp.]

http://www.eolss.net/Eolss-sampleAllChapter.aspx
https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-43-07-07

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Simulation Software – Development and Trends - F.
Breitenecker and I. Troch

©Encyclopedia of Life Support Systems (EOLSS)

Kleijnen J. P. C. (1975). Statistical Techniques in Simulation. New York: Marcel Dekker. [This book
introduces into correct use of statistical techniques in discrete simulation]

L’Ecuyer P. (1998). Random number generation. In (J. Banks, ed.) Handbook on Simulation, 93 – 137.
New York: John Wiley. [Good survey paper on random number generators by one of the fathers of this
subject]

Sargent R. G. (1988). Event graph modeling for simulation with an application to flexible manufacturing
systems. Management Science. 34(10) 1231 - 1251. Elkridge, MD: INFORMS. [Overview paper for
application of event graphs in automation]

Schmidt B. (2001). The Art of Modeling and Simulation: Introduction into the Simulation System
SIMPLEX-3. Erlangen: SCS European Publishing House. [Introduction into continuous, discrete and
hybrid simulation using the simulator SIMPLEX]

Schriber T. J. (1991). An Introduction to Simulation Using GPSS/H. New York: John Wiley & Sons.
[Introduction into discrete simulation using the simulator GPSS/H]

Solar D. and Breitenecker F. (1988): The Simulation System HYBSYS. In Proc.European Simulation
Multiconferences ESM88, 312 – 318. San Diego: SCS Publishing. [Introduces a hybrid simulators based
on the Model-method-Experiment - concept]

Strauss J. C. (1967) The SCi continuous system simulation language (CSSL). Simulation 9, 281-303. San
Diego: SCS Publishing. [Paper defining the CSSL standard for simulation languages]

Zeigler B.P. (1976). Theory of Modeling and Simulation. New York: John Wiley & Sons. [This book is a
standard book for discrete simulation, introducing the concept of model frame and experimental frame]

Biographical Sketches

Felix Breitenecker studied “Technical Mathematics” at Vienna University of Technology (VUT),
finishing with Master of Technical Sciences (Dipl.-Ing.) in 1976 and graduated (Dr.techn.) with a thesis in
Mathematics of Control.in 1979. From 1976 on he worked as research assistant at the VUT Mathematics of
Control and Simulation Group and from 1984 on, as associate professor at VUT for “Simulation and
Mathematics of Control” doing education and RD in modeling and simulation. He was guest professor at
University Glasgow, at Univ. Clausthal-Zellerfeld, Univ. Ljubljana,. and Univ. Linz.

He is active in various modeling and simulation societies: president and past president of EUROSIM since
1992, board member and president of the German Simulation Society ASIM, member of INFORMS, SCS,
UKSIM, etc. In 2004 he has been elected into the executive board of GI, the German Gesellschaft für
Informatik. In 2001 he received as first European, the Distinguished Service Award of INFORMS, the OR
Society of USA.

He has organized and co-organized the European Simulation Congress Vienna (1995), ASIM conferences
in Vienna, the conference series MATHMOD in Vienna, and Simulation Workshops in UK, Germany and
Austria.

Felix Breitenecker covers a relatively broad research area, from mathematical modeling to simulator
development, from discrete event simulation to symbolic computation, from numerical mathematics to
object-oriented simulation implementation, from biomedical and mechanical simulation to workflow and
process simulation.

He is involved in various national and international research projects and he is active in industry projects,
e.g. with Daimler-Chrysler and EADS. In co-operation with ARCs, the Austrian Research Center
Seibersdorf, he takes part on research and industry projects in biomedical engineering and in process
engineering.

He has published about 210 scientific publications, and he is author of two 2 books and editor of 16 books
(Proceedings and Series). Since 1992 he is editing the journal Simulation News Europe, Editor in Chief
since 1995, and he is co-editor of the SCS Series “Frontiers in Simulation” and “Advances in Simulation”.

Inge Troch graduated (Dr.techn.) with a thesis in mathematics of control at the Vienna University of
Technology. She is University Professor since 1974 and initiated courses and scientific work in
Mathematics of Control, Modeling and Simulation at TU-Vienna. Her teaching comprises courses in these

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. IV - Simulation Software – Development and Trends - F.
Breitenecker and I. Troch

©Encyclopedia of Life Support Systems (EOLSS)

areas as well as on basic mathematics for engineering students and on differential equations at TU-Vienna,
courses in robotics at the Universities of Linz and Bologna and for the Scientific Academy of Lower
Austria at Krems. At present she is head of the Institute for Analysis and Scientific Computing at
TU-Vienna.

She is Austrian delegate in IFAC Technical Committees (TCs) 'Optimal Control' and 'Linear Systems' and
was chairperson for a four year term (and is still active member) of the VDI/VDE-GMA Committee on
'Modeling and Simulation in Automation' in Germany. She is chairperson of the IMACS-TC on
'Mathematical Modeling' and organizes successfully a series of triennial conferences on Mathematical
Modeling (MATHMOD Vienna). She is senior member of IEEE.

Inge Troch is Editor-in-Chief of the journal Mathematical and Computer Modeling of Dynamical Systems
and a member of the international editorial board of Mathematics and Computers in Simulation
(MATCOM), Systems Analysis, Modelling and Simulation, J. Intelligent and Robotic Systems (JIRS) and
Surveys on Mathematics in Industry). She was member of the editorial board of C-TAT (Control -- Theory
and Advanced Technology), and was/is also a member of the IPC and/or session organizer of some 60
international symposia and congresses.

Inge Troch is a co-author of two books, co-editor of nine Proceedings, editor of several special issues of
scientific journals, author or co-author of about 120 articles in scientific journals and books in the fields of
mathematics of control (stability, systems theory, optimization), modeling, simulation and robotics.

