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Summary 
 
This contribution presents development and trends of simulation software, with emphasis 
on control systems, robotics, and automation. Simulation emerged in the 1960’ in order to 
be able to analyze nonlinear dynamic system and to synthesize nonlinear control systems, 
and in order to investigate complex automation systems. Since that time simulation as 
problem solving tool has been developed towards the third pillar of science (beneath 
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theory and experiment), and in parallel simulation software has been developed further on. 
The paper first follows the roots from analog computation and control system simulation, 
followed by the introduction of the CSSL standard for simulation languages. The next 
chapter is devoted to numerical algorithms for solving differential equations, which build 
up the simulation engine of a simulator.  
 
Of interest is the special relation between simulation software tools and computer aided 
control system design tools (CACSD tools), discussed in the following chapter. Recent 
developments are discussed in next chapters: advanced analysis methods in simulators, 
simulation with implicit models, hybrid simulation, simulation in specific domains, and 
hybrid and combined modeling and simulation. 
 
The second part of the contribution deals first with discrete simulation software for e.g. 
automation of manufacturing systems and with object-oriented approaches and software 
implementation of simulators, which allow real hybrid simulation, and ends with an 
overview on choice and comparison of simulation software. 
 
1. Introduction 
 
Simulation software plays a major role in analysis of nonlinear control systems and 
complex automation systems. Simulation software, simulation languages, simulators, 
simulation systems, and simulation environments is computer software intended for 
simulation of dynamic systems at a higher level than programming languages can do. The 
different terms used reflect more or less the development of this special kind of software, 
and unfortunately, in the literature these terms are very often mixed.  
 
A “simulation” is a method for solving a problem in dynamical systems, which 
investigates instead of the real system a model of the system. The method “simulation” 
itself consists of several steps or tasks, which are: (1) formulation of the problem, (2) data 
collection, (3) mathematical modeling, (4) computer implementation, (5) model 
validation, (6) model identification, (7) experiments with the model, (8) representation of 
results, and (9) interpretation of results. 
 
Thereby the experiments with the model (7) are usually investigations in the time domain, 
as the system under investigation is dynamic. The ideal simulation system should support 
all these steps, but up to now no simulation system supports all steps sufficiently. 
Roughly speaking, a simulation language emphasizes on implementation and partly on 
experimenting and modeling, “simulation software” is a little bit more general supporting 
implementation and experimenting and partly modeling, a simulation system additionally 
offers help for data gathering and data pre-processing, for validation and for identification, 
and for data post-processing (result representation) - a simulation system may consist of 
several parts.  
 
Finally, a simulation environment is an integrated software environment combining the 
various parts of a simulation system, with database interface, increased support for 
modeling. The term “simulator” does not fit in this pattern. In common understanding, 
previously it was used for a hardware-oriented simulator, like a flight simulator or any 
other training simulator, nowadays it stands more or less for an abbreviation of all other 
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terms.  
 
Almost everywhere one meets the distinction between continuous simulation and discrete 
simulation. First, again we are faced with a veritable tower of Babylon. Roughly speaking, 
continuous modeling and simulation is based on time domain analysis of nonlinear 
system described by ODEs using ODE solvers, whereas discrete modeling and simulation 
is based on time domain analysis of queuing systems described by process flow using 
time event handling.  
 
But in continuous modeling and simulation we meet discrete elements, like discrete 
controllers described by difference equations, or hybrid systems, where at some times the 
states change in discrete patterns. As discussed later on, the basic algorithm of a 
continuous simulator as well as of a discrete simulator is an event handling algorithm 
with more or less complicated state changes in the events. The distinction of and the 
difference in discrete and continuous modeling is caused by the sometimes very different 
education of people in discrete and continuous simulation. 
 
2. Continuous Roots of Simulation 
 
The classical analysis of dynamic systems, especially of control systems, consists of 
eigenvalue analysis of the linearized mathematical model. As systems became more and 
more complex, this linear analysis was not sufficient, and the need of analyzing the 
nonlinear system became evident. It became necessary to analyze the model in the time 
domain - by means of a simulator. The first simulators were purely hardware; they 
worked with the principle of analogy.  
 
The mathematical model of the system was mimicked by a physical device that obeys the 
equations. The mechanical differential analyzer developed at MIT was the first hardware 
simulator for dynamical systems. States were represented by angles; integration was 
performed by the ball and disc integrator. In 1947, Ragazzini demonstrated that this 
simulation could be done electronically. States and variables were represented as voltages 
in an electronic circuit. So the analogue computers were borne, which were widely used 
until the 1980s. 
 
Simulation with an analog computer was a time-consuming: choosing proper state 
variables (represented by voltages), creating the circuit diagram from the equations (very 
similar the control diagrams), scaling the states, patching the circuit, and recording the 
simulation output. In the late days of analog simulation, there were attempts to support 
this procedure by software: digital scaling programs, automatic patching devices driven 
by a block-oriented scaled analog model description, and prototype programs for 
transforming the equations into the block-oriented description.  
 
Furthermore, a digital computer was coupled with the analogue simulator (called hybrid 
simulator), in order to control, perform and document experiments, and also to model 
digital control. In parallel, as soon as digital computers appeared, it was tried to use them 
for simulation. The basic idea was to simulate the analogue computer at the digital 
computer. Models could be entered in the form of analog computer diagrams 
(block-oriented description) or control loops, and previous working practices could be 
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used. In the late sixties there were about twenty different programs available, called 
simulation languages or simple “simulators” (because of the analogue heritage, e.g. 
MIMIC, DYNASAR, DSL, and CSMP. 
 
Also at European Universities projects for "digital" simulators were started, based on the 
experience with analog and hybrid simulation. The HYBSYS project at Vienna 
University of Technology started as automatic patch system for an analog simulator. Next 
step was to replace the analog computer by a library of ODE solvers, to extend the model 
description appropriately, and to incorporate a runtime environment (simulation system 
HYBSYS). HYBSYS continued with a submodel structure similar to an object-oriented 
structure, which was very modern for those times. Further developments of HYBSYS 
partly implemented the Model- Method – Experiment – Concept – for details see later, 
and a parallelization concept. 
 
3. CSSL Structure in Continuous Simulation 
 
Simulation (i.e. time domain analysis) supported various developments in engineering 
and other areas, and simulation groups and societies were founded. One main effort of 
such groups was to standardize digital simulation programs and to work with a new basis: 
not any longer simulating the analog computer, but a self standing structure for 
simulation systems.  
 
There were some unsuccessful attempts, but in 1968 the CSSL Standard (The CSSL 
Report commissioned by the Simulation Council Inc - Sci) became the milestone in the 
development: it unified the concepts and language structures of the available simulation 
programs, it defined a structure for the model, and it describes minimal features for a 
runtime environment. 
 
The CSSL standard suggests structures and features for a model frame and for an 
experimental frame. This distinction is based on Zeigler’s concept of a strict separation of 
these two frames:  
 

• The model frame has to provide a comfortable way for model description - on a 
much higher level than within a programming language  

• The experimental frame should allow experimenting with the implemented model, 
either interactively, or with a sequence of batch commands 

 
Model frame and experimental frame are the user interfaces for the heart of the simulation 
system, for the simulator kernel or simulation engine. The simulation engine drives the 
calculations in the time domain:  
 

• it is started from commands of the model frame,  
• it first initializes parameters and states (calculations may be parts of the model 

frame),  
• then it calls and controls an ODE solver, which itself evaluates the model 

equations (given in the dynamic part of the model frame) and in parallel data are 
logged,  

• and at the end it does final calculations and data recording (calculations may be 
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parts of the model frame) 
 
This basic structure of a simulator - due to CSSL standard – is illustrated in Figure 1, an 
extended structure with service of discrete elements (see later) is given in Figure 5. 

 

 
 

Figure 1: Basic structure of a simulation language due to CSSL standard 
 
3.1. Structure of the Model Frame 
 
In principle, in CSSL’ model frame, a system can be described in three different ways, as 
an interconnection of blocks as in MIDAS, DYNASAR, ACSL Graphic Modeler, and 
SIMULINK, by mathematical expressions as in MIMIC, ESL, DSL, and ACSL, and by 
conventional programming constructs as in FORTRAN or C.  
 
Mathematical basis is the state space description 
 

0 0( ) ( ( ), ( ), , ), ( )t t t t t= =x f x u p x x  
 
Any kind of textual model formulation, of graphical blocks or structured mathematical 
description or host languages constructs must be transformed to an internal state equation 
of the structure given above, so that the vector of derivatives ( , , , )tf x u p can be calculated 
for a certain time instant ( ( ), ( ), , )i i i i it t t=f f x u p . This vector of derivates is fed into an 
ODE solver in order to calculate a state update  1 ( . , )i i i h+ = Φx x f , h  stepsize (all 
controlled by the simulation engine). Essential is CSSL’s concept of SECTIONs or 
REGIONs, giving a certain structure to the model description. First, CSSL defines a set of 
operators like INTEG which formulates parts of the state space description for the system 
governing ODEs (and which emulates the integrator of the analog computer). Other 
memory operators like DELAY for time delays and HYST for hysteresis, TABLE 
functions for generating (technical) tables, and transfer functions of arbitrary order 
complete dynamic modeling parts (strongly influenced by requirements for control 
systems). The dynamic model description builds up the DYNAMIC or DERIVATIVE 
section of the model description, for simple models the only one section. Automatic 
sorting of the equations (blocks) to proper order of the calculation is another very 
essential feature of CSSL. The model can be formulated in arbitrary sequence – allowing 
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structured parts, the translator puts the statements in the proper order for calculating the 
derivative vector. Furthermore, the user can define new block types by means of a 
MACRO definition. The macro feature is a predecessor of object-oriented modeling: the 
macro definition is similar to a class definition; the macro invocation is the instantiation 
of an object of the class defined. The CSSL standard also extends the classical model 
description in state space form, aiming for better structured modeling and more efficient 
implementations. Sometimes together with the state space equations we also meet 
parameter equations, parameter dependent initial values, and calculations with the 
terminal values (e.g. for cost functions in an optimization):  
 

0, ( , ( )) , ( , ( ))ft E t= =C(p) = 0 I p x 0 p x 0  
 
In principle, all this calculations could be done in the dynamic model description, but then 
they are calculated at each evaluation of the derivative vector of the ODE solver – 
although they have to be calculated only once. 
 
In the following, a non-structured and structured model description for the pendulum is 
given. The well known equations (length l , mass m , damping coefficient d ) are 
 

0 0( ) sin , (0) , (0)g dt
l m n

πϕ ϕ ϕ ϕ ϕ ϕ ϕ= − − = = =  

 
where now parameter equations are added (in parentheses the intrinsic parameter 
equations of the model are given): 
 

deg
0 , 2 , ( ) ( ) ( , )

180f f
g dd D t t a b

n l m
π πϕ ϕ ϕ= = = = =  

 
In ACSL (Advanced Continuous Simulation Language; Mitchell and Gauthier 1976, 
1981) a model description can be formulated structured and non-structured. In table 1 the 
non-structured model is given: 

 
PROGRAM math_pendulum 
! --- unstructured CSSL model 
--------------------- 
! --- model parameters 
---------------------------- 
  CONSTANT m=1, l=1, d=0.3 ! kg, m, N*s/m  
  CONSTANT g=9.81, pi=3.141592653 
  CONSTANT dphi0=0, phi0=0.78539816 !  
! --- model equations 
----------------------------- 
    phi0=pi/4 
  phi = integ ( dphi,        phi0) 
  dphi = integ (-(g/l)*sin(phi)-(d/m)*dphi, 
dphi0) 
    phi_grad = phi*180/pi 
END ! of Program 
---------------------------------- 
 

 
Table 1: Non-structured textual model description 
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This unstructured model description given above is translated totally into the derivative 
vector, so that initial value and final value are calculated at each evaluation of the 
derivative vector.  
 
The following structured model description in ACSL generates more efficient code: only 
the DERIVATIVE section is translated into the derivative vector function, while 
INITIAL section and TERMINAL section are translated into functions called 
immediately before and after the ODE solver, as shown in table 2. 
 

 
PROGRAM math_pendulum 
! --- structured CSSL model ------------------------ 
! --- model parameters ----------------------------- 
  CONSTANT m=1, l=1, d=0.3 ! kg, m, N*s/m  
  CONSTANT g=9.81, pi=3.141592653; dphi0=0, pintel=2 
INITIAL ! calculation with parameters-------------- 
    phi0 = pi/pintel; a = g/l; b = d/m 
END ! of INITIAL ---------------------------------- 
     DERIVATIVE ! ODE model ------------------------- 
       phi = integ ( dphi,        phi0) 
      dphi = integ ( -gdl*sin(phi) - ddm*dphi, dphi0) 
     END ! of DERIVATIVE ---------------------------- 
TERMINAL ! calculations with final states --------- 
    phi_grad = phi*180/pi 
END ! of TERMINAL --------------------------------- 
END ! of Program ------------------------------------ 
 

 
Table 2: Structured textual model description 

 
With graphical window systems, graphical model descriptions became important. Here 
the roots go back on the one side to analog computation using patching diagrams, and on 
the other side to control techniques with signal flow diagrams.  
 
Consequently, simulation systems offered this kind of model description, either as 
stand-alone model frame, or as extension of a textual model frame. The following picture 
shows the model for the pendulum using SIMULINK, one of the most used graphical 
simulators. 
 
But in the graphical SIMULINK model (Figure 2) one disadvantage appears: the 
graphical structure consisting of directed dynamic signal flow allows almost no structure 
for dynamic calculations and static calculations; e. g. one finds the calculation of the final 
value and the calculation of the dependent parameters as dynamic block, which is 
evaluated at each call of the ODE solver (except the calculations for the initial value).  
 
From 2000 on, graphical model frames were enriched by structures discussed before; in 
SIMULINK, triggered subsystems can be used for such purposes (Figure 3, possible 
triggered subsystems shown in subwindow). 
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Figure 2: Graphical model description of pendulum in SIMULINK 
 
3.2. Requirements for the Experimental Frame 
 
In principle, the experimental frame has to set parameters, it has to control and perform 
the “simulation” of the model (the solution of the system governing ODEs), and it should 
support documentation of the results. In the CSSL standard, minimal requirements for 
runtime environment are given as follows: 
 

• availability of certain ODE Solvers (Euler, RK4, RK-Fehlberg, and Gear or BDF  
algorithms for stiff systems 

• possibility for change of parameters, eventually also calculations with parameters,  
• and documentation of results in a plotting system 

 
From 1968 on all simulation languages tried to meet the CSSL standard. But the 
implementations were and are different. First, the structure with sections or regions can 
be given explicitly by definition of this section, semi-implicitly by type declarations of all 
variables, and full implicitly by recognition of the translator (which must run at last a 
two-pass parser). For instance, SIMNON defines parameters and states, so that for sorting 
the section structure is determined; for the pendulum example, these definitions are: 

 
    parameter m, l, 
g, ……. 
    state      phi,  
phidot 
    derivative 
dphi, ddphi 
 

These definitions determine the structure of the equations, but they also show a (minor) 
problem: a state cannot be a derivative, and vice versa; in principle, dphi is both, so it has 
to be renamed, e.g. as state with phidot. 
 
There are many different ways to implement a simulation system. In a pure interpreter 
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implementation, first the runtime system – an interpreter – recognizes the commands, and 
starts the simulation engine - in most cases the start of the simulation run in the time 
domain. The engine (sometimes compiled, sometimes working in interpreter mode) calls 
an interpreter algorithm for solving the ODE, which itself has to calculate the derivative 
vector by interpretation of the sorted equations. In a pure compiled implementation, first a 
translator transforms the model description into a host language resulting in a function 
call for the derivative vector (and for additional functions). A compiled library system 
(with simulation engine, with ODE solvers, with parameter change facilities, and with a 
plotting system) is linked to this compiled model, which then can be handled from a 
compiled runtime environment. One meets various mixtures of compiled and interpreted 
implementations, as well as on the one side really strict distinctions of model frame and 
experimental frame, and on the other hand definitions of model frame and experimental 
frame in a common deck for compilation. Clearly, there are advantages and disadvantages 
in all kinds of implementation. Generally holds: the more compiled, the faster, but the 
more inflexible for changes, and the more interpreted, the slower, but the more flexible 
for changes. In addition to modeling features, CSSL also suggests statements for 
selecting integration routines and their parameters, for controlling the simulation, and for 
documentation of results. 
 
4. Numerical Algorithms in Simulation Systems 
 
With the first digital computers the development of numerical software started. This 
software was implemented in libraries, written usually in FORTRAN. The first numerical 
libraries concentrated on linear analysis and linear algebra, like the BLAS library. The 
Basic Linear Algebra System was mainly used in control applications, and in applied 
mathematics. Soon libraries with other algorithms became available, amongst them 
algorithms for solving ODE solving. Most of these algorithms replace the differential 
quotient by difference quotients. Euler’s method is based on approximation of the 
derivative by a first order difference. There are more efficient techniques such as 
Runge-Kutta and multi-step methods. These methods were well known when digital 
simulators emerged in the 1960s. This field of numerical mathematics experienced a 
revival because of the impact of digital computers. Important contributions were given to 
stability of difference approximations. Automatic step length adjustment was another 
important contribution. 
 
Systems with both fast and slow modes (stiff systems) posed a particular difficulty for 
explicit ODE solvers. It is necessary to choose a very short step length to have numerical 
stability, which gives a very slow simulation and results in numerical errors for the slow 
model parts. Here implicit integration schemes offer a help, allowing a bigger stepsize. 
Numerical solvers for this purpose appeared in 1970. It turned out, that implicit solvers 
can also handle implicit model equations and model equations with algebraic constraints, 
so that the conquest for the best DAE (Differential-Algebraic Equations) solvers started 
(for comments on implementation see section on implicit model descriptions). Implicit 
model equations very often occur e.g. in modeling robots (if inversion of the mass matrix 
is inappropriate or impossible).Nowadays, FORTRAN has lost dominance, user find 
libraries with ODE and DAE solvers in C, C++, Java, etc. Standardized libraries like 
IMSL and NAG library offer more then one host language. The kernel of a simulation 
system makes use of these ODE and DAE solvers.  
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5. Simulation Software and CACSD Tools 
 
The fore-mentioned BLAS library was also the basis of another type of software, of the 
so-called CACSD tools (Computer-Aided Control System Design). The most prominent 
tool is the MATLAB system with all its toolboxes. MATLAB itself offers ODE solvers - 
to be called from the MATLAB environment - , which frequently must call the evaluation 
of the derivative vector – to be supplied as function in an m-file. Here MATLAB does not 
fulfill the requirements for a simulator, because the model description, the m-file with the 
derivative vector, follows classic programming rules (no sorting, fixed state space, etc.) – 
consequently one cannot call MATLAB a simulator. But after the first MATLAB 
versions a special toolbox for simulation was released, the SIMULINK system 
(previously called SIMULAB). SIMULINK is a model frame for graphical model 
representation, which on the one side offers a simple experimental frame by pull-down 
menus in the model layout, but which on the other side is driven by MATLAB, the up to 
now most powerful experimental frame. SIMULINK can be seen as simulator, with 
graphical model frame and a small experimental frame consisting of pop-down menus. 
SIMULINK / MATLAB can be seen as powerful simulator with the graphical model 
frame SIMULINK (without use of the pop-down menus for experimentation), and with 
the very powerful experimental frame MATLAB (without direct MATLAB calls to ODE 
solvers). 
 
In general, graphical model representations of the SIMULINK type shown in Figure 2 
were used to represent models in terms of integrators, adders and potentiometers in the 
early days of analog simulation and to represent control loops and transfer functions. 
However, graphical modeling was not widely used until modern work stations and the PC 
with raster graphics became generally available. Boeing’s simulator EASY5 from 1976 
was provided with a graphical user interface. Not only MATLAB, but also the other 
matrix environments MATRIXX and CTRL_C were provided with graphical modeling 
tools: SystemBuild, integrated in MATRIXX, and SYSTEM-C integrated in CTRL-C 
appeared in 1984, whereby the first versions made use of the graphical system GEM, and 
not of the WINDOWS environment (at that time really GEM was much more stable than 
WINDOS 1.x). MATLAB started SIMULINK in 1991, implemented in WINDOWS in 
1991, interestingly first called SIMULAB.  
 
These three CACSD systems became simulation systems by means of the graphical 
model frames with weak structures. But neither MATLAB nor MATRIXX and 
CNTRL-C offer better structured textual model frames, so that up to now MATLAB / 
SIMULINK is a simulator with relatively weakly structured model frame, but with the 
most powerful experimental frame, with MATLAB itself (from MATLAB’s point of 
view simulation is only one of the analysis methods offered). The MATLAB / 
SIMULINK system dominates clearly the market for continuous simulation, many 
simulators of the 1980s and 1990s have vanished, and competitors could only survive by 
concentrating on special areas, e.g. special model frames. But the analog computing 
paradigm with its requirement of explicit state models (ODE) is a fundamental limitation 
of block diagram modeling. The blocks have a unidirectional data flow from inputs to 
outputs. A severe consequence is that it is cumbersome to build physics based model 
libraries in the block diagram languages. Despite all of these disadvantages in 
SIMULINK, the MATLAB / SIMULINK system became the most used simulator – 
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because of the very powerful experimental frame MATLAB (see also next chapter). 
Indeed, up to now the experimental frames of many simulators must be called very poor. 
 
- 
- 
- 
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Kleijnen J. P. C. (1975). Statistical Techniques in Simulation. New York: Marcel Dekker. [This book 
introduces into correct use of statistical techniques in discrete simulation] 

L’Ecuyer P. (1998). Random number generation. In (J. Banks, ed.) Handbook on Simulation, 93 – 137. 
New York: John Wiley. [Good survey paper on random number generators by one of the fathers of this 
subject]  

Sargent R. G. (1988). Event graph modeling for simulation with an application to flexible manufacturing 
systems. Management Science. 34(10) 1231 - 1251. Elkridge, MD: INFORMS. [Overview paper for 
application of event graphs in automation] 

Schmidt B. (2001). The Art of Modeling and Simulation: Introduction into the Simulation System 
SIMPLEX-3. Erlangen: SCS European Publishing House. [Introduction into continuous, discrete and 
hybrid simulation using the simulator SIMPLEX] 

Schriber  T. J. (1991). An Introduction to Simulation Using GPSS/H. New York: John Wiley & Sons. 
[Introduction into discrete simulation using the simulator GPSS/H] 

Solar D. and Breitenecker F. (1988): The Simulation System HYBSYS. In Proc.European Simulation 
Multiconferences ESM88,  312 – 318. San Diego: SCS Publishing. [Introduces a hybrid simulators based 
on the Model-method-Experiment - concept] 

Strauss J. C. (1967) The SCi continuous system simulation language (CSSL). Simulation 9, 281-303. San 
Diego: SCS Publishing. [Paper defining the CSSL standard for simulation languages] 

Zeigler B.P. (1976). Theory of Modeling and Simulation. New York: John Wiley & Sons. [This book is a 
standard book for discrete simulation, introducing the concept of model frame and experimental frame] 
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areas as well as on basic mathematics for engineering students and on differential equations at TU-Vienna, 
courses in robotics at the Universities of Linz and Bologna and for the Scientific Academy of Lower 
Austria at Krems. At present she is head of the Institute for Analysis and Scientific Computing at 
TU-Vienna. 

She is Austrian delegate in IFAC Technical Committees (TCs) 'Optimal Control' and 'Linear Systems' and 
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Inge Troch is Editor-in-Chief of the journal Mathematical and Computer Modeling of Dynamical Systems 
and a member of the international editorial board of Mathematics and Computers in Simulation 
(MATCOM), Systems Analysis, Modelling and Simulation, J. Intelligent and Robotic Systems (JIRS) and 
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international symposia and congresses. 

Inge Troch is a co-author of two books, co-editor of nine Proceedings, editor of several special issues of 
scientific journals, author or co-author of about 120 articles in scientific journals and books in the fields of 
mathematics of control (stability, systems theory, optimization), modeling, simulation and robotics. 


