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Summary  
 
Frequency response function (FRF) measurements are an interesting intermediate step 
in the identification process. The complexity of the modeling problem is visualized 
before starting the parametric modeling, the quality of the measurements is assessed in 
an early phase. In this chapter a number of basic and advanced FRF measurement 
methods are discussed. An analysis of the bias and efficiency of the FRF measurements 
is made, and their dependency on the experimental conditions and on the excitation 
signal is analyzed. Simple and more advanced averaging techniques are proposed to 
improve the quality of the FRF measurement. Guidelines given at the critical steps of 
the FRF measurement process enable the less experienced user to start modeling from 
good raw data. 
 
1. Introduction 
 
Consider the linear dynamic system G  between the input ( )u t  and the output ( )y t  as 
shown in Figure 1. The aim of the following chapters in this topic is to build a 
parametric model for this system, 

 
 

Figure 1. Block diagram of the system 
 
identifying, for example, a transfer function ( ),G s θ  or ( ),G z θ . Such a model is called 
a parametric model since it employs a finite-dimensional parameter vector. Parametric 
modeling requires a series of user decisions (e.g. selection of the order of numerator and 
denominator of ( )G s ), thus it is strongly advised to get a good initial idea about the 
system under test. Step or impulse response measurements provide this information. 
Also frequency response (FRF) measurements are very valuable. An FRF consists of the 
measurement of the transfer function ( )kG s j= ω  at a discrete set of frequencies 

, 1,...,k k Fω = . All these models are called non-parametric since the information is not 
condensed into a small set of parameters. In this chapter we focus, exclusively, on FRF 
measurements. A series of basic questions is addressed: 
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• How are the bias and efficiency of the FRF measurements influenced by the 

experimental conditions? 
• How should the excitation signal be chosen?  
• Can we improve the quality of the FRF using averaging methods? 
• Can we quantify the quality of the FRF-measurements? 

 
All these aspects are discussed below. Starting from a straightforward solution, the more 
advanced techniques are introduced step by step, showing each time what additional 
problems are addressed by these more advanced techniques. Since FRF measurement 
techniques heavily rely on the time-to-frequency domain transformation of sampled 
signals, we will spend some time on the most important aspects of the discrete Fourier 
transform. 
 
2. An Introduction to the Discrete Fourier Transform 
 
In most situations, real life systems are naturally continuous in time. However, most 
signal processing is done, nowadays, on digital computers that operate on discrete-time 
signals. In practice the continuous-time signals are discretized (sampled) and quantized 
(digitized) so that the signal can finally be stored in the memory of a digital computer. 
Next, the spectrum of these signals is needed in order to calculate the FRF of the 
system. This is done using the discrete Fourier transform (DFT), usually calculated with 
the fast Fourier transform algorithm (FFT). Each of these steps creates errors, and it is 
important for a user to understand their behavior to minimize the impact of the errors on 
the results. In this section only a brief introduction is given. For an extended overview, 
the reader is referred to the literature. First we discuss, briefly, the sampling process, 
next we show how to “measure” the Fourier spectrum of a signal, and finally we focus 
on the spectral properties of periodic excitations and how to exploit them to minimize 
the measurement errors. 
 
2.1. The Sampling Process 
 
The continuous-time signal is sampled uniformly with sampling interval s ,T  and is 
represented by the equivalent discrete-time sequence 

( ) ( )d s , , , 1,0,1, ,u n u nT N= = −∞ − +∞… … . In the time domain, the sampling process 
can be formulated as a multiplication with a periodically repeated Dirac impulse: 
 

( ) ( ) ( ) ( ) ( )
s sd swithT T nu t u t t t t nT

=−
= δ δ = δ −∑� ∞

∞
 (1) 

 
Note that in this framework the discrete-time signal ( )du n  is formally represented by a 

continuous-time signal ( )du t�  that carries all its power at the discrete-time instances 

snT . Define the spectrum of the discrete-time signal as 
 

( ) ( )s s2 2
d d

j fT j fnT
nU e u n eπ π−
=−= ∑∞

∞
 (2) 
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Then the following relation exists:  
 

( ) ( ) ( ){ } ( )s2 2
d d d2j fT j ft

dU e U j f F u t u t e dtπ ππ −= = = ∫� � �
∞

−∞
. (3) 

 
The spectrum ( )s

d
j TU e ω  is linked to ( )U jω  by noticing that the multiplication in the 

time domain, ( ) ( )
sTu t tδ , corresponds to the convolution of the spectra in the frequency 

domain, ( ) ( )( )ss2 fU j f f fπ ∗ δ , with ( )
ss ff fδ  the spectrum of ( )

sT tδ , and ( )
sf

fδ  a 

periodically repeated Dirac impulse with period s s1/f T=  
 

( ) ( )s sf kf f kf+
=−

δ = δ −∑ ∞
∞

 (4) 

 
Using (4), we get 
 

( ) ( ) ( )( ) ( )( )s
s ss

s

2 12 2
j fT

d f kU e U j f f f U j f kf
T

π
π π

=−
= ∗ δ = −∑+∞

∞
. (5) 

 
The convolution of the spectra is illustrated in Figure 2. 

 
It shows that the sampling process results in a repeated spectrum in the frequency 
domain with period 

s
f . If the bandwidth Bf  of the sampled signal is larger than half 

the sampling frequency, the shifted spectra overlap and information is lost. Therefore, it 
is important to restrict the bandwidth below half the sampling frequency 

s
/ 2Bf f<  in 

order to avoid errors. This error is called the aliasing error and the condition on the 
sample frequency is known as Shannon’s sampling theorem. In practice it is often 
necessary to put anti-alias filters to eliminate the high frequency spectral content of the 
signal.  
 

 
 

Figure 2. Impact of the domain discretization (sampling) on the spectrum. 
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2.2. The Discrete Fourier Transform (DFT-FFT) 
 
Three basic steps have to be made to measure the spectrum of a continuous-time signal: 
 
• Discretization in time: sample the continuous-time signal at an equidistant time grid. 
• Restrict the length of the data record: our computers can only deal with a finite 

number of data. Thus the length of the record is restricted to N  samples, excluding 
the rest. This is called windowing. 

• Discretization in frequency: the finite length discrete-time signal has still a 
continuous frequency spectrum. The value of this spectrum will only be calculated 
at an equidistant set of frequencies. 

 
The impact of all these steps is illustrated in more detail below, in a simple example. 
The continuous-time signal ( ) 0cos 2u t f tπ= , with 0 5.5 Hzf =  is sampled at 

s 64 Hzf =  during 1 second. From these measurements we will calculate the discrete 
Fourier transform step by step. 
 
2.2.1. Discretization in Time 
 
The sampling process has already been discussed in the previous section. Figure 3 
shows the signal together with its spectrum before and after sampling. In order to keep 
enough detail in the shown figures, a zoom is made in the frequency band [-10 Hz, 10 
Hz]. The periodic repetitions of the spectrum of the discrete-time sequence are not 
shown. Note that if no aliasing appears, the spectrum of the continuous-time and the 
discrete-time signal are equal to each other within a scale factor. 
 

 
 

Figure 3. The time signal before and after sampling together with the spectrum in the 
frequency band [-10 Hz, 10 Hz]. 
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Mathematical operation: 
 
time domain:  
 

( ) ( ) ( )sd nu t u t t nT+
=−

= δ −∑� ∞
∞

 

 
frequency domain: 
 

( ) ( )( )s
s

s

2
d

1 2
j fT

kU e U j f kf
T

π
π

=−
= −∑+∞

∞
 (6) 

 
2.2.2. Windowing 
 
The sampled signal has still an infinite length ( ]−∞,∞[ ). Since the computer can only 
process a finite number of samples, we have to restrict the measurement length. We 
consider only samples that appear in the measurement window: 
 
( ) ( )1 if 0 and 0w t t T w t= ≤ < =  elsewhere. (7) 

 
This rectangular window, together with its spectrum (the phase is omitted), is shown in 
Figure 4 

 

 
 

Figure 4. Rectangle window, and its spectrum (the phase is omitted). 
 
This window is called a rectangular window and its major characteristic is its width T . 
Its spectrum ( )2W j fπ  is a sinc-like ( sin( ) /x x ) signal, see Eq. (8), with zero crossings 
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at the multiples of 1/T . In this example 1 sT = . This window is multiplied with the 
sampled signal to obtain a new signal that is only different from zero in a finite number 
of samples. 
 
The spectra have to be convoluted in the frequency domain. Remembering that a 
convolution with a Dirac impulse is nothing other than a shift of the origin to the 
position of the impulse, the result of Figure 5 is found. The broken lines in the spectra 
indicate the position of the original frequency components. As can be seen, the 
restriction of the signal to a finite interval in the time domain smears the power in the 
frequency domain over the neighboring frequencies. This phenomenon is called 
leakage. 
 
Mathematical description:  
 
Time domain: ( ) ( )dw t u t�  
 
Frequency domain: ( ) ( )s2

d2 j fTW j f U e ππ ∗  (8) 

 
With ( ) ( ) ( ) ( )/ 2sinc /2 and sinc sin /j TW j Te T x x x− ωω = ω = . 
 
2.2.3. Discretization in Frequency 
 
As can be seen in Figure 5,  
 

 
 

Figure 5. Spectrum of the sampled signal after applying a rectangular window. 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. V - Measurements of Frequency Response Functions - J. 
Schoukens and R. Pintelon  
 

©Encyclopedia of Life Support Systems (EOLSS) 

The spectrum of the sampled and windowed signal is still a continuous frequency 
signal. Because the spectrum can only be calculated in a finite number of frequencies, 
the considered frequencies should also be restricted to a discrete grid. An equidistant 
grid with spacing 1/T  is selected. Hence the spectrum is only calculated at the 
frequencies /kf k T=  Hz. This can be considered as frequency sampling or 
discretization in frequency. The resulting sampled spectrum shown in Figure 6  

 

 
 

Figure 6. DFT result 
 
 is quite disappointing. Although the shape of the original spectrum (Figure 3) can still 
be recognized, it seems that all detailed information about it has definitely been lost. 
The basic reason for this problem is that the original frequency (5.5 Hz) does not 
correspond to one of the sampled frequencies in the DFT (multiples of 1/ 1HzT = ).  
 
This can also be seen in the time domain representation of the DFT result. Sampling in 
the frequency domain at multiples of 1/T  is described as a multiplication with a Dirac 
train (see Section 2.1) so that in the time domain a convolution should be made with a 
Dirac train ( )TT tδ . This results in a periodic repetition with period T  of the sampled 
and windowed signal as shown in Figure 7.  
 
However, T  is not a multiple of the signal period, resulting in a discontinuity which 
appears at the borders of the window as seen in Figure 7( 1T =  s in this case).  
 
Mathematical description: 
 
time domain: 
 

( ) ( )( ) ( )( )d Tw t u t T t∗ δ�  
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frequency domain: ( ) ( )( ) ( )s2
d 1/2 j fT

TW j f U e fππ ∗ δ    (9) 

 
 

Figure 7. Interpretation of the DFT result in the time domain. 
   
From (9) it follows that the relationship between the time domain samples 

( ) ( )sdu n u nT=  (amplitudes of the Dirac impulses of the time domain signal in (9)), 

and the frequency domain samples ( )DFTU k  (amplitudes of the Dirac impulses of the 
spectrum in (9)), is given by 
 

( ) ( )1 2 /
DFT 0 , 0,1,... 1N j nk N

snU k u nT e k Nπ− −
== = −∑  (10)  

 
Eq. (10) is called the discrete Fourier transform (DFT) of the samples 
( )s , 0, 1, ..., 1u nT n N= − . 

 

 
 

Figure 8. DFT spectrum for a periodic signal when an integer number of periods is 
measured. 
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If an integer number of periods is measured, the DFT will give an exact copy of the 
discrete    spectrum    of    the    periodic    signal.    This    is    illustrated    in    Figure 8   
showing the spectra after windowing and after discretization for 
( ) 0 0cos 2 , 5 Hz , 1 su t f t f Tπ= = = .  

 
This time no leakage is observed. The basic reason for this remarkable difference is that 
the continuous-time spectrum equals zero at those frequencies where the spectrum is 
sampled because the window length is an exact multiple of the period length. Also the 
time domain interpretation in Figure 9 illustrates the result: this time the periodic 
repetition coincides with the period of the signal (no discontinuities appear at the 
multiples of T)  
 

 
 

Figure 9. Interpretation of the DFT result in the time domain when an integer number of 
periods is measured. 

 
At a glance, this seems to be a theoretical result without practical value. The probability 
of getting an exact match between the signal and the window length is in general, 
indeed, zero. However, in many FRF measurements, the user masters the generator and 
the acquisition. In these experimental setups both systems are driven by mother clocks 
that are synchronized to each other.  
 
It is therefore possible for the user to create this ideal match which eliminates the 
leakage effect completely. We strongly advise realization of such a setup whenever 
possible.  
 
If for some reason it is impossible to get synchronized measurements, there exist other 
less attractive alternatives based on windows other than the rectangular window. An 
extended discussion of the window properties can be found in the literature. In Section 
2.3.we will briefly touch on this topic. 
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