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Summary  
 
In this chapter we discuss subspace algorithms using the covariance matrix of the 
disturbing noise. The performance of these algorithms is compared with the (weighted) 
linear least squares and (weighted) generalized total least squares methods discussed in 
Estimation with known Noise Model. In turns out that the frequency domain subspace 
identification algorithms are very good alternatives to generate high quality starting 
values for the optimal maximum likelihood solution. 
 
1. Introduction 
 
In McKelvey et al. (1996) and Van Overschee and De Moor (1996) frequency domain 
subspace algorithms have been developed for respectively discrete-time and continuous-
time models. These identification methods have proven to be very effective in solving 
real life problems such as, for example, modal analysis (McKelvey et al., 1996), 
modeling of power transformers (Akcay et al., 1999), flight flutter analysis and 
modeling of synchronous machines (Pintelon and Schoukens, 2001a).  
 
In general (non-uniformly spaced frequency domain data and/or arbitrarily colored 
disturbing noise) these algorithms are consistent only if the covariance matrix of the 
disturbing noise is known. Therefore, instrumental variable based versions have been 
developed which are consistent without requiring the knowledge of the noise covariance 
matrix (see McKelvey, 1997 for discrete-time models and Yang and Sanada, 2000 for 
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continuous-time models). Since the algorithms using the noise covariance matrix have 
better statistical properties than the instrumental variable based versions, and since the 
required noise information can easily be obtained from a small number of independent 
repeated experiments (see Estimation with unknown Noise Models), we limit the 
discussion to the methods requiring the noise covariance matrix. 
 
The chapter is organized as follows. Section 2 develops the basic model equations (plant 
and noise models) used by the frequency domain subspace algorithms. A detailed 
description of the algorithms using the true noise covariance matrix is given in Section 
3. The assumptions commonly made in subspace identification are that the input is 
exactly known and that the system is proper.  
 
What to do if these assumptions are not met is discussed in Section 4. Section 5 
compares the performance of the subspace algorithms with some of the estimators 
discussed in Estimation with known Noise Model. Finally, Section 6 illustrates the 
approach on a real measurement example. To simplify the notations we limit the 
discussion to single input, single output systems. Extension of the results to 
multivariable systems is straightforward (McKelvey et al., 1996 and Van Overschee and 
De Moor, 1996). 
 
2. Model Equations 
 
2.1. Plant Model 
 
Consider a proper, an th order single input single output system. The relation between 
the input ( )u t  and the output ( )y t  can be written under state space representation form 
as, respectively, 
 

( ) ( ) ( )

( ) ( ) ( )

dx t Ax t Bu t
dt
y t Cx t Du t

= +

= +
        (1) 

 
for continuous-time systems, and 
 

( 1) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t
+ = +

= +
       (2) 

 
for discrete-time systems, where ( ) R anx t ∈  is the state vector. The frequency domain 

subspace algorithms estimate the parameters R a an nA ×∈ , 1R anB ×∈ , 1R anC ×∈  and 
RD∈  from a transformed version of the state space equations (1) and (2). These are 

constructed as follows.  
 
Assume that the input is periodic and that the steady state response over an integer 
number of periods is observed. The discrete Fourier transform (DFT) of (1) and (2) then 
becomes 
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( ) ( ) ( )
( ) ( ) ( )
k X k AX k BU k

Y k CX k DU k
ξ = +

= +
       (3) 

 
with ( )Z k , , ,Z U Y X= , the DFT of ( )z t , , ,z u y x=  

1 2 /
0

1( ) ( )N j kt N
tZ k z t e

N
− − π
== ∑       (4) 

 
and where zξ =  for discrete-time systems and sξ =  for continuous-time systems. 
Recursive use of the second and the first equation of (3) gives 

1

1

1 2 1

( ) ( ( ) ( ))

( ( ) ( ) ( ))

( ) ( ) ( )

p p
k kk k

p
kk

p pp p p
k k k

Y k C X k D U k

CAX k CBU k D U k

CA X k CA B CA B CB D U k

−

−

− − −

ξ = ξ ξ + ξ

= ξ + + ξ

=

= + + ξ + + ξ + ξ

…

…

 (5) 

 
Writing the last equation of (5) for 0,1, , 1 ( )ap r r n= − >…  on top of each other gives 
 

( ) ( ) ( ) ( ) ( )r r r rW k Y k O X k S W k U k= +       (6) 
 
with 
 

1 1 2 3

0 0 01

0 0
( ) ,  and k

r r r

r r r rk

DC
CA CB D

W k O S

CA CA B CA B CB D
− − − −

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ξ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ξ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

…

…
… … … … … … …

…

  (7) 

 
Collecting (6) for 1,2, ,k F= …  gives 
 

r rO S= +Y X U         (8) 
 
with 
 

[ ]

(1) (1) (2) (2) ( ) ( ) ,

(1) (1) (2) (2) ( ) ( ) ,

(1) (2) ( ) .

r r r

r r r

W Y W Y W F Y F

W U W U W F U F

X X F

= ⎡ ⎤⎣ ⎦
= ⎡ ⎤⎣ ⎦
=

Y

U

X

…

…

…

     (9) 

 
The complex data matrices Y  and U  have r  rows and F  columns. X  is a complex 

an  by F  matrix, and rO  and rS  are, respectively, real r  by an  and r  by r  matrices. 
Equation (8) is converted in a real set of equations as 
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re re re
r rO S= +Y X U ,        (10) 

 
where re( )  locates the real and imaginary parts beside each other, for example, 
 

re [Re( ) Im( )]=Y Y Y  (11) 
 
Equation (10) with r  larger than the model order an , is the basic model used in 
frequency domain subspace identification. 
 
The extended observability matrix rO  has the following shift property 
 

[1: 1,:] [2: ,:]r r r rO A O− = ,        (12) 
 
which will be used in the identification procedure. rO  is not unique since it depends on 
the choice of the state variables. Indeed, replacing ( , , , , )A B C D X  by 

1 1 1( , , , , )T AT T B CT D T X− − − , with T  an invertible matrix, in the state space equations 
(3), does not change the input-output transfer function  
 

1( ) ( )
anG C I A B D−ξ = ξ − +        (13) 

 
but does change rO  to rO T . Note that rO X  and rS  in model equation (8) are invariant 
w.r.t. the invertible transformation T . 
 
Since A , B  and C  are not unique, one may wonder how the quality of the estimates 
Â , B̂  and Ĉ  can be evaluated. This is possible by referring the estimates Â , B̂  and Ĉ  
to one particular (true or noisy) state space realization A , C  
 

1 1ˆ ˆ ˆ ˆ ˆˆ ˆ,  and  with T T T r rA T AT B T B C CT T O O− − += = = = ,   (14) 
 
where +  is the Moore-Penrose pseudo-inverse 1ˆ ˆ ˆ ˆ( ( ) )T T

r r r rO O O O+ −= , and where rO , 
ˆ

rO  are defined as in (7) using, respectively, ( , )A C  and ˆ ˆ( , )A C . Note that applying a 

similarity transformation P  to Â , B̂  and Ĉ  does not change ˆ
TA , ˆ

TB  and ˆ
TC . Hence, 

it is possible to calculate the sample mean and sample covariance matrices of ˆ
TA , ˆ

TB  

and ˆ
TC . To simplify the notations the subscript T  will be dropped in the sequel of the 

paper. 
 
For identifiability purposes it will be assumed that the state space realization (3) is 
observable, rrank( ) aO n=  for any ar n≥ , and controllable, 

1rank([ ])q
aB AB A B n− =…  for any aq n≥ . 
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3 . Noise Model 
 
The theory is developed assuming that the input is exactly known and that the output is 
observed with errors 
 

0

0

( ) ( )
( ) ( ) ( )Y

U k U k
Y k Y k N k

=

= +
        (15) 

 
with 0 ( )U k , 0 ( )Y k  the true input and output DFT spectra, and ( )YN k  the noise errors. 

( )YN k  has zero mean { ( )} 0YE N k = , variance 22 ( ) var( ( )) { ( ) }Y Y Yk N k E N kσ = = , and 
is independent of 0 ( )Y k . What to do if also the input observations are noisy is discussed 
in Section 4, Practical Remarks. For noisy output DFT spectra ( )Y k , model (10) 
becomes 
 

re re re re
r rO S= + + YY X U N ,       (16) 

 
where YN  has the same structure as Y  in (9). 
 
3. Subspace Algorithms 
 
Subspace identification algorithms are basically a three step procedure. First, an 
estimate ˆ

rO  of the extended observability matrix is obtained using model (16). This is 
the most difficult step and consists mainly of eliminating the term depending on the 
input and reducing the noise influence.  
 
Next, Â  and Ĉ  are found as the least squares solution of the overdetermined set of 
equations (12) and as the first row of ˆ

rO  (see (7)) respectively. Finally, B̂  and D̂  are 
found as the linear least squares solution of 
 

22 1
SUB 1

ˆ ˆ ˆ ˆ( , , , , ) ( ) ( ) [ ( ) ] ( )
a

F
k nkV C D A C Z W k Y k C I A B D U k−

== − ξ − +∑ , (17) 

 
where ( )W k  is a well chosen real weighting function. 
 
We present two algorithms, one for discrete-time systems ( )zξ = , based on McKelvey 
et al., (1996), and one for continuous-time system ( )sξ =  , based on Van Overschee 
and De Moor (1996). The numerically efficient implementation of these algorithms is 
due to Verhaegen (1994). 
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