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Summary  
 
The consistent identification schemes presented in Estimation with known Noise Model 
and Frequency Domain Subspace Algorithms, assumed explicitly that the covariance 
matrix of the disturbing noise is known a priori. In practice this information should also 
be extracted from the experimental data. In this chapter, it is shown that a utilizable 
non-parametric frequency domain noise model can be obtained from a very small 
number of repeated experiments. Under these conditions the consistency of the 
estimates is maintained, while the loss in efficiency is small. A consistent estimator, 
which does not use (an estimate of) the noise covariance matrix is also presented. Since 
this chapter relies strongly on the results of Estimation with known Noise Model and 
Frequency Domain Subspace Algorithms, it can not be read independently of these 
chapters. 
 
1. Introduction 
 
1.1. Problem Statement 
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In Estimation with known Noise Model and Frequency Domain Subspace Algorithms a 
large variety of estimators were discussed, ranging from linear least squares methods to 
maximum likelihood estimators. The more advanced estimators like GTLS, BTLS and 
ML estimators require knowledge of the covariance matrix with the disturbing noise as 
a function of the frequency. For example, the ML estimator of transfer function model 
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with ( , , ( )) ( , ) ( ) ( , ) ( )k k ke Z k A Y k B U kθ θ θΩ = Ω − Ω  the equation error, 

2 ( , ) var( ( ,e k keθσ Ω = Ω  , ( )))ZN kθ  the variance of the equation error, 
 

2 22 2 2 2( , ) ( ) ( , ) ( ) ( , ) 2Re( ( ) ( , ) ( , ))e k Y k U k YU k kk A k B k A Bθ θ θ θ θσ Ω =σ Ω +σ Ω − σ Ω Ω  (3) 
 
and ( , , ( )) ( , , ( )) / ( , )k k e kZ k e Z kε θ θ θΩ = Ω σ Ω  the normalized equation error. The noise 

(co-) variances 2 ( )U kσ , 2 ( )Y kσ  and 2 ( )YU kσ  were assumed to be known exactly, and 
under these conditions the properties of the estimators were studied. In practice, this 
information is not available, but should be extracted from the experimental data. In this 
chapter we will replace the exact noise (co-)variances by their sample values. This is 
only possible if independent, repeated experiments are available. A practical solution 
consists of applying periodic excitations to the plant and observing M  consecutive 
periods of the steady state response. These M  experiments result in a set of M  
input/output DFT spectra 
 

[ ] [ ]( ), ( ), 1, ,  and 1, ,l lU k Y k l M k F= =… … .     (4) 
 
The sample means and sample (co-)variances of this set of measurements is calculated 
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The sample means ˆ ( )U k , ˆ( )Y k  and the sample noise (co-)variances 2ˆ ( )U kσ , 2ˆ ( )Y kσ  and 
2ˆ ( )YU kσ  are used in (2) and (3) instead of ( )U k , ( )Y k  and the true noise (co-)variances. 

To compare this approach with the classical framework that deals with arbitrary 
excitations (Ljung, 1999), we have to simplify the errors-in-variables framework to a 
weighted output error problem. This means that only process noise is considered, the 
measurement noise on the input and the output is assumed to be zero ( 2 ( ) 0U kσ =  and 

also 2 ( ) 0YU kσ = ) so that the cost function (2) reduces to 
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Because in this classical framework no repeated measurements are imposed, the sample 
variance 2ˆ ( )Y kσ  cannot be calculated. Instead a parametric noise model 

22 1( ) ( , )Y kk H z θ2 −σ = σ  is used and the additional noise model parameters are estimated 

together with the plant model parameters (Ljung, 1999). This poses to the question as to 
what approach should be preferred: the parametric or the non-parametric (sample (co-) 
variances) noise modeling approach? 
 
The major advantage of the parametric modeling approach is its applicability to 
arbitrary excitations. Its major disadvantages are the need for a double model selection 
problem (plant model and noise model), the more complex optimization problem, and 
the fact that the quality of the estimated noise model strongly depends on the quality of 
plant model. The reader is referred to Ljung (1999) for a comprehensive discussion of 
these techniques. 
 
The major disadvantages of the non-parametric approach are the restriction to periodic 
excitations and the loss in frequency resolution of a factor M  w.r.t. the parametric 
approach (see also Section 3.1). However, whenever periodic excitations can be applied, 
significant advantages appear: the non-parametric model is generated automatically, 
without any user interaction; the errors-in-variables problem can be solved 
straightforwardly (no equivalent solution is available in the classical approach); the cost 
function is absolutely interpretable, which simplifies the validation process significantly 
(see Section 6). For these reasons, we prefer to use the non-parametric noise models 
whenever it is possible to apply periodic excitations, independent of the fact that a time 
or frequency domain method will be used later on. 
 
1.2. Noise Model 
 
The estimators are studied under the following idealized noise assumptions. First, we 
require that M  independent repeated experiments are available. Next, we make an 
assumption about the disturbing errors of the lth experiment. 
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1. The measured input/output DFT spectra , [ ] [ ]( ), ( ), 1, 2, ,l lU k Y k k F= …  and 
1,2, ,l M= … ,  satisfy 
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where the true unknown deterministic values 0 ( )U k , 0 ( )Y k  are independent of l , and 

where the disturbing input/output errors [ ]( )l
UN k , [ ]( )l

YN k  are independent over l .  

2. The disturbing noise [ ] [ ] [ ]( ) [ ( ) ( )]l l l T
Z Y UN k N k N k=  is independent over the 

frequency k , has  zero mean, and is circular complex normally distributed with 
covariance matrix 
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and with [ ] [ ]{ ( )( ( )) } 0l l T

Z ZE N k N k =  (Picinbono, 1993). 
 
The noise behavior is characterized using the sample mean and sample variance, 
obtained from a set of repeated measurements. Hence the two conditions are met in 
practice for a frequency domain experiment (see Section 1.1 of Estimation with known 
Noise Model for the definition of a frequency and time domain experiment). For a time 
domain experiment we often obtain these repeated measurements by measuring M  
successive periods in one record. For each period, we calculate the Fourier coefficients 
and consider them as independent experiments from one period to the other as 
formalized in (8). This is only approximately met in practice since some correlation 
exists between neighboring periods. Because the correlation of filtered white noise (time 
domain experiment assumption) decays exponentially, the correlation between two 
neighboring periods reduces as the length of the period is increased. In practice it can be 
neglected if the period length is large compared with the correlation length of the noise. 
 
2. Estimation Algorithms 
 
2.1. Maximum Likelihood 
 
A new cost function is defined putting ˆ ( )U k , ˆ( )Y k  and 2ˆ ( )U kσ , 2ˆ ( )Y kσ , 2ˆ ( )YU kσ  as the 
measurements and the variances, respectively, into the cost function (2): 
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with ˆ
ˆ ˆˆ ˆ ˆ( , , ( )) ( , , ( )) / ( , )k k e kZ k e Z kε θ θ θΩ = Ω σ Ω  and 
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Note that 2 [ ]ˆ ˆ( , ) var( ( , , ( )))l

e k k Ze N kθ θσ Ω = Ω  stands for the variance of the equation 

error of one experiment, while 2
ˆ

ˆˆ ˆ( , ) var( ( , , ( )))e k k Ze N kθ θσ Ω = Ω  is the variance of the 
sample mean of the equation error. 
 
The most important concern, when replacing the exact noise (co-)variances by their 
sample values, is the loss in quality of the new estimator SML

ˆ ( )Zθ  (minimizer of (10)) 

with respect to the original estimate ML
ˆ ( )Zθ  (minimizer of (2)) due to this change. 

Taking the expected value of (10) taking into account that the sample mean and sample 
variance of Gaussian random variables are independently distributed, gives 
 

SML ML
1{ ( , )} { ( , )}
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θ θ−
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−
.     (12) 

 
(Schoukens et al., 1997 and Pintelon and Schoukens, 2001). Applying quick analysis by 
tools 2 and 3 of Section 2.3 of Estimation with known Noise Model shows that (i) in the 
absence of model errors SML

ˆ ( )Zθ  converges (in stochastic sense for F →∞ ) to the true 
value 0θ , and (ii) in the presence of model errors (unmodeled dynamics or nonlinear 

distortions) SML
ˆ ( )Zθ  converges (in stochastic sense for F →∞ ) to 

SML 0 ML 0( ) ( )Z Zθ θ=� � , the minimizer of the expected value of the cost function. It also 
follows that the minimizers of the limit cost functions ( F →∞  in (2) and (10)) are 
equal *SML *MLθ θ= . If no model errors are present it can also be shown that the 

covariance matrix of SML
ˆ ( )Zθ  is a factor ( 2) /( 3)M M− −  larger than the covariance 

matrix of ML
ˆ ( )Zθ  

 

SML ML
2ˆ ˆCov( ( )) Cov( ( ))
3

MZ Z
M

θ θ−
=

−
     (13) 

 
(Schoukens et al., 1997 and Pintelon and Schoukens, 2001). For example, for 

4,5,6M =  and 10 the standard deviation increases by 41%, 22%, 15% and 7%, 
respectively. We conclude that SML

ˆ ( )Zθ  has the same asymptotic properties as ML
ˆ ( )Zθ  

described in Sections 2.4 and 3.4 of Estimation with known Noise Model. Each property 
requires, however, a minimal number of independent repeated experiments: 4M =  for 
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the convergence, 6M =  for the convergence rate and 7M =  for the asymptotic 
normality (Pintelon and Schoukens, 2001). 
 
Equation (13) quantifies the loss in efficiency due to the use of the sample variances. 
However, it does not give an answer how to calculate SML

ˆCov( ( ))Zθ  from the available 

information. ML
ˆCov( ( ))Zθ  is approximated by 

 
1

ML
ML ML

( , ) ( , )ˆCov( ( )) 2 Re( ) ,ˆ ˆ( ) ( )

H
Z ZZ
Z Z

ε θ ε θθ
θ θ

−
⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂⎢ ⎥≈ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

 

(see Section 3.4 of Estimation with known Noise Model) and in practice, during the 
calculations of the covariance matrix, the exact variances in ( , )Zε θ  are again replaced 
by the sample variances, and only ˆ( , )Zε θ  is available. Using similar calculations as in 
(12), it turns out that 
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so that (13) is replaced by 
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Note that the expression between brackets in (15) equals, within a factor of 
2( 3) /( 1)M M− − , the matrix of the normal equation in the last Newton-Gauss step of 
the minimization of (10) (see Eq. (16) of Estimation with known Noise Model). 
 
2.2. Generalized Total Least Squares 
 
The general form of the cost function of the GTLS estimator is given by Eq. (38) of 
Estimation with known Noise Model: 
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Replacing in this expression ( )Z k  by the sample mean ˆ ( )Z k  and the exact noise (co-
)variances by the sample noise (co-)variances gives the sample GTLS (SGTLS) cost 
function 
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where ˆˆ( , , ( ))ke Z kθΩ  and 2

ˆˆ ( , )e k θσ Ω  are defined in (11). The minimizer SGTLS
ˆ ( )Zθ  of 

(17) is not calculated using the iterative Newton-Gauss scheme (see Eq. (15) or (17) of 
Estimation with known Noise Model), but via the generalized singular value 
decomposition of the matrix pair ˆˆ( ( ), )reJ Z C  with ˆ ˆˆ( ) ( , ) /J Z e Zθ θ= ∂ ∂  and Ĉ  a square 

root of the column covariance matrix of ˆ ( )re ZJ N , calculated using the sample noise 
(co-)variances (see Section 3.3 of Estimation with known Noise Model). Just like the 
GTLS estimate, SGTLS

ˆ ( )Zθ  suffers from the amplification of the high frequency errors 
(see Section 3.3.3 of Estimation with known Noise Model). To cope with this problem 
weighted SGTLS versions can be constructed as in Sections 3.3.3 and 3.5.3 of 
Estimation with known Noise Model. 
 
The properties of SGTLS

ˆ ( )Zθ  can be analyzed by using the quick analysis tools of 
Estimation with known Noise Model where SGTLS( , ) ( , )FV Z V Zθ θ= , and 

SGTLS( , ( ), ) ( , )Ff Z Z V Zθ η θ=  with 1( )Z Fη −=  2
ˆ1

ˆ ( , )F
e kk θ= σ Ω∑ . Since ( )Zη  

converges for 2M ≥  to 
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(strong law of large numbers), it can easily be found that 
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Hence, in the absence of model errors SGTLS

ˆ ( )Zθ  converges to the true value 0θ  (quick 

tool 2 of Estimation with known Noise Model), and in case of model errors SGTLS
ˆ ( )Zθ  

converges to SGTLS 0 GTLS 0( ) ( )Z Zθ θ=� �  (quick tool 3 of Estimation with known Noise 
Model). It also follows that the minimizers of the limit cost functions ( F →∞  in 
(16)and (17)) are equal *SGTLS *GTLSθ θ= . If no model errors are present it can also be 
shown that 
 

SGTLS GTLS
ˆ ˆCov( ( )) Cov( ( ))Z Zθ θ=       (20) 

 
(Pintelon and Schoukens, 2001). This is no longer true if model errors are present. The 
basic reason for the similar asymptotic behavior of SGTLS

ˆ ( )Zθ  and GTLS
ˆ ( )Zθ  is that the 

“poor quality” sample (co-)variances are averaged over the frequency in the cost 
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function (17), resulting in a “high quality” estimate of the denominator of the cost 
function. We conclude that SGTLS

ˆ ( )Zθ , with 2M ≥ , has exactly the same asymptotic 

properties as GTLS
ˆ ( )Zθ  described in Sections 2.4 and 3.3.3 of Estimation with known 

Noise Model. 
 
- 
- 
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