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Summary  
 
In this chapter, a discussion of frequency domain identification methods is given. Here, 
we give first a general but very concise introduction to identification. Next we zoom in 
on the identification of dynamic systems, where most attention is spent to the user 
aspects of the identification problem. Eventually we deal with the choice between time 
domain and frequency domain identification methods, guiding the user to reasonable 
solutions for his problem. Some of the suggested methods will be explained in 
Identification of Linear Systems in Time Domain that deals with time domain 
identification methods. 
 
In the article level contributions, we first deal with nonparametric frequency response 
measurements. The second contribution gives a more detailed discussion of parametric 
frequency domain identification methods. The third article is focused on modal analysis. 
Typical for these vibration problems is the very large number of outputs. The huge 
amounts of data require dedicated algorithms that balance between accuracy and 
memory/computing needs. In the last article, the relations between time domain and 
frequency domain identification is discussed. 
 
1. Introduction 
 
The goal of identification is to build a model of reality, starting from a finite set of 
observations. At the first glance this might seem to be a simple task, however, in 
practice it becomes involved because a perfect model does not exist, and the 
observations are disturbed by noise. Moreover, nature as a whole is too complex to be 
modeled; we concentrate our efforts on just one part of reality at a time, called the 
system, the rest of nature being referred to as the environment of the system.  
 
Interactions between the system and its environment are described by input and output 
ports. So the task becomes to find a good model that describes the information that is 
present in the measurements of the signals at these input and output ports. In each 
identification task the same questions pop up: what experiments should be done? What 
models should be used? How to match the model to the data? How to check if all 
information from the experimental data is used? These are the basic questions that 
should be answered.  
 
The complexity of the identification problem is illustrated by a very simple example. A 
group of students measures a resistor using the setup that is shown in Figure 1.They 
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passed a constant but unknown current through the resistor. The voltage 0u  across the 
resistor and the current 0i  through it were measured using a voltmeter and an ampere 
meter. The input impedance of the voltmeter is very large compared with the unknown 
resistor so that all the measured current is assumed to pass through the resistor. A set of 
voltage and current measurements, respectively, ( ) ( ),u k i k with 1, 2,...,k N= is made, 

resulting in a set of measured resistance values ( ) ( ) ( )/R k u k i k= . The measurement 
results are shown in Figure 2. 
 

 
 

Figure 1. Measurement of the resistance of a resistor 
 

 
 

Figure 2. Left side: Measurement results ( ), ( )u k i k  and ( ) ( ) ( )R k u k / i k= . Right side: 
The estimated value of the resistor using 3 different estimators. 

 
For the model, Ohm’s law is used: u Ri= . There is no unique solution to match this 
model to the measurements. Here we compare 3 alternatives: 
 

 ( ) ( )
( )SA 1

1ˆ N
k

u k
R N

N i k=
= ∑  minimizing ( ) ( )( )2SA 1, N

kV R N R k R== −∑    (1) 
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The notations SA, LS, EV will become clear later on in this chapter. The index N  
indicates that the estimate is based on N  observations. Note that each estimator in this 
case can be interpreted as the minimizer of a cost function that is used as a measure of 
the goodness of the fit.  
 
The choice of the cost function determines the estimator and its properties. The three 
estimators result in the same estimate on noiseless data (replace 
( ) ( ) 0 0 0 0, by ,u k y k i u R i= . However, on noisy data their behavior is different, as is 

illustrated by a simulation. The raw measurements and the estimated resistance values 
are given in Figure 2. From this figure a number of interesting observations can be 
made: 
 

• All estimators have large variations for small values of N , and converge to an 
asymptotic value for large values of N . This corresponds to the intuitively 
expected behavior: if a large number of data points are processed we should be 
able to eliminate the noise influence due to the averaging effect. 

• The asymptotic values of the estimators depend on the kind of averaging 
technique that is used. This shows that there is a serious problem: at least 2 out 
of the 3 methods converge to a wrong value. It is not even certain that any one of 
the estimators is doing well. This is quite disturbing and disappointing: even an 
infinite amount of measurements does not guarantee that the exact value is 
found. 

 
These observations prove very clearly that a good theory is needed to explain and 
understand the behavior of candidate estimators. This will allow us to make a sound 
selection out of many possibilities and to indicate in advance, before running expensive 
experiments, if the selected method is prone to serious shortcomings. 
 
2. A Brief Introduction to Identification 
 
In this section we consider the general identification problem. First we discuss the basic 
steps that can be recognized in every identification procedure. Next we develop some 
tools to describe the stochastic behavior of estimates. This allows us to understand 
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better what can be expected from a ‘good’ estimator. Finally we present a statistical 
approach to the identification problem. 
2.2 Basic Steps in the Identification Process 
 
Each identification session consists of a sequence of basic steps: 
 

• Collect information about the system; 
• Select a model structure to represent the system; 
• Choose the model parameters to fit the model as closely as possible to the 

measurements: selection of a “goodness of fit” criterion; 
• Validate the selected model. 

 
Each of these points is discussed in more detail in the following. 
 
2.1.1 Collect Information about the System 
 
If we want to build a model for a system we should get information about it. This can be 
done by just watching the natural fluctuations (e.g. vibration analysis of a bridge that is 
excited by normal traffic), but most often it is more efficient to set up dedicated 
experiments that actively excite the system (e.g. controlled excitation of a mechanical 
structure using a shaker). In the latter case the user has to select an excitation that 
optimizes his/her own effort (e.g. minimum cost, minimum time or minimum power 
consumption for a given measurement accuracy) within the operational constraints (e.g. 
the excitation should remain below a maximum allowable level). The quality of the final 
result can heavily depend on the choices that are made. 
 
2.1.2 Select a Model Structure to represent the System 
 
A specific model should be selected to represent the system. Again a wide variety of 
possibilities exist such as 
 
•parametric versus non-parametric models  
 
In a parametric model, the system is described using a limited number of characteristic 
quantities called the parameters of the model, while in a non-parametric model the 
system is characterized by measurements of a system function at a large number of 
points.  
 
Examples of parametric models are the transfer function of a filter described by its poles 
and zeros, the equations of motion of the piston in a reciprocating engine , etc. An 
example of a non-parametric model is the description of a filter by its impulse response 
at a large number of points. 
 
Usually it is simpler to create a non-parametric model than a parametric one because the 
modeler needs less knowledge about the system itself in the former case. However, 
physical insight and concentration of information are more significant for parametric 
models than for non-parametric ones.  
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•white box models versus black box models  
 
In the construction of a model, physical laws, whose availability and applicability 
depend on the insight and skills of the experimenter, can be used (Kirchhoff’s laws, 
Newton’s laws, etc.). Specialized knowledge relating to different scientific fields may 
be brought into this phase of the identification process. The modeling of a loudspeaker, 
for example, requires extensive understanding of mechanical, electrical and acoustical 
phenomena. The result may be a physical model, based on comprehensive knowledge of 
the internal functioning of the system. Such a model is called a white box model. 
 
Another approach is to extract a black box model from the data. Instead of developing a 
model based upon physical insight and knowledge, a mathematical model is proposed 
which allows sufficient description of any observed input and output measurements. 
This reduces the modeling effort significantly.  
 
For example, instead of modeling the loudspeaker using physical laws, an input-output 
relation, taking the form of a high-order transfer function, could be proposed. The 
choice between the different methods depends on the aim of the study: the white box 
approach is better for gaining insight into the working principles of a system, but a 
black box model may be sufficient if the model will only be used for prediction of the 
output. 
 
•linear models versus non-linear models  
 
In real life almost every system is non-linear, but often linear approximation are made to 
simplify the problems. The validity of linearization depends strongly on the intended 
use of the model. For example, a non-linear model is needed to describe the distortion of 
an amplifier, but a linear model will be sufficient to represent its transfer characteristics 
if the linear behavior is dominant and is the only interest. 
 
•linear-in-the-parameters versus non-linear-in-the-parameters  
 
A model is called linear-in-the-parameters if there exists a linear relation between these 
parameters and the error that is minimized. This does not imply that the system itself is 
linear. For example ( )2

1 2y a u a uε = − +  is linear in the parameters 1a  and 2a  but 

describes a non-linear system. On the other hand 
    

( ) ( ) ( )0 1

0 1

a a j
j Y j U j

b b j
ε

+ ω
ω = ω − ω

+ ω
 (4) 

 
describes a linear system but the model is non-linear in 1b  and 2b . Linearity in the 
parameters is a very important aspect of models since it has a strong impact on the 
complexity of the estimators if a (weighted) least squares cost function is used. In that 
case the problem can be solved analytically for models that are linear in the parameters 
so that an iterative optimization problem is avoided. This is illustrated in Section 2.3. 
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2.1.3 Match the selected Model to the Measurements  
 
The selected model (e.g. a parametric transfer function model of given order) should be 
matched as closely as possible with the available information about the system. Mostly, 
this is done by minimizing a criterion that measures a goodness of the fit, like the cost 
functions in (1) to (3). The choice of this criterion is extremely important since it 
determines the stochastic properties of the final estimator. As seen from the resistance 
example, many choices are possible and each of them can lead to a different estimator 
with its own properties. Usually, the cost function defines a distance between the 
experimental data and the model. The cost function can be chosen on an ad hoc basis 
using intuition and insight, but there exists also a more systematic approach based on 
stochastic arguments as will be explained in Section 2.3.  
 
2.1.4 Validate the selected Model 
 
Finally, the validity of the selected model should be tested: does this model describe the 
available data properly or are there still indications that some of the data are not well 
modeled, indicating residual model errors? In practice the best model (= the smallest 
errors) is not always preferred. Often a simpler model that describes the system within 
user-specified error bounds is preferred. Tools exist that guide the user through this 
process by separating the residual errors into different classes, for example unmodeled 
linear dynamics and non-linear distortions. From this information further improvements 
of the model can be proposed, if necessary. 
 
During the validation tests it is always important to keep the application in mind. The 
model should be tested under the same conditions as it will be used later. Extrapolation 
should be avoided as much as possible. The application also determines what properties 
are critical. 
 
2.1.5 Conclusion 
 
This brief overview of the identification process shows that it is a complex task with a 
number of interacting issues. It is important to pay attention to all aspects of this 
procedure, from experiment design to model validation, in order to get the best results. 
The reader should be aware of the fact that besides this list of actions other aspects are 
also important. A short inspection of the measurement setup can reveal important 
shortcomings that can jeopardize a lot of information. Good understanding of the 
intended applications helps to setup good experiments and is very important to make 
proper simplifications during the model building process. Many times, choices are made 
that are not based on complicated theories but are dictated by the practical 
circumstances.  
 
In these cases a good theoretical understanding of the applied methods will help the user 
to be aware of the sensitive aspects of his techniques. This will enable him/her to put all 
his/her effort on the most critical decisions. Moreover, he/she will become aware of the 
weak points of the final model. 
 
2.2 Description of the Stochastic Behavior of Estimators: What can be expected 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. V - Frequency Domain System Identification - J. Schoukens and 
R. Pintelon 

©Encyclopedia of Life Support Systems (EOLSS) 

from a good Estimator? 
 
Since the estimates are obtained as a function of a finite number of noisy measurements, 
they are stochastic variables as well. Their probability density functions (pdf) are 
needed in order to characterize them completely. However, in practice it is usually very 
hard to derive them, and the behavior of the estimates is described only by a few 
numbers, such as their mean value (as a description of the location) and the covariance 
matrix (to describe the dispersion). Both aspects are discussed below.  
 
2.2.1 Location Properties: Unbiased and Consistent Estimates 
 
For simplicity, we choose the mean value over other possibilities like the median. It 
seems very natural to require that the mean equals the true value, but it turns out to be 
impractical. What are the true parameters of a system? We can only speak about true 
parameters if an exact model exists. This is a purely imaginary situation; in practice we 
always have model errors. For theoretical reasons it still makes sense to consider the 
concept of “true parameters”, but it is clear at this point that we have to generalize to 
more realistic situations. One possible generalization is to consider the estimator 
evaluated in the noiseless situation as the “best” approximation. These parameters are 
then used as reference values to compare the results obtained from noisy measurements. 
The goal is then to remove the influence of the disturbing noise so that the estimator 
converges to this reference value. 
 
Definition 2.1 (unbiasedness): An estimator θ̂  of the parameters 0θ  is unbiased if 

{ } 0
ˆE θ θ= , for all true parameters 0θ . Otherwise it is a biased estimator. 

 
If the expected value only equals the true value for an infinite number of measurements, 
then the estimator is called asymptotically unbiased. In practice it turns out that 
(asymptotic) unbiasedness is a hard requirement to deal with. Often, it is very difficult 
or even impossible to find the expected value analytically; sometimes it does not even 
exist. Consequently, a more conveneint tool (e.g. consistency) is needed. 
 
Definition 2.2. (consistency): An estimator ( )ˆ Nθ  of the parameters 0θ  is weakly 

consistent, if it converges in probability to ( )0 0
ˆ: plim

N
Nθ θ θ

→
=

∞
, and strongly consistent 

if it converges with probability one (almost surely) to ( )0 0
ˆ: a.s.lim

N
Nθ θ θ

→
=

∞
. 

 
The precise explanation of these probability limits is beyond the scope of this chapter. 
Loosely speaking, it means that the pdf of ( )ˆ Nθ  contracts around the true value 0θ , or 

( )( )0
ˆlim Prob 0 0

N
Nθ θ δ

→
− > > =

∞
 . The major advantage of the consistency concept 

is purely mathematical: it is much easier to prove consistency than unbiasedness using 
probabilistic theories starting from the cost function interpretation. 
 
2.2.2 Dispersion Properties: Efficient Estimators 
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We use the covariance matrix to describe the dispersion of an estimator, i.e. to ascertain 
how much the actual estimator is scattered around its limiting value? Again this choice, 
among other possibilities (like, for example, percentiles), is highly motivated from a 
mathematical point of view: within the stochastic framework used it will be quite easy 
to calculate the covariance matrix. As users we are highly interested in estimators with 
minimal errors. However, since we can collect only a finite number of noisy 
measurements it is clear that there are limits on the accuracy and precision we can 
reach. This is precisely quantified in the Cramér-Rao inequality. This inequality 
provides a lower bound on the covariance matrix of a(n) (un)biased estimator starting 
from the likelihood function. First we introduce the likelihood function; next we present 
the Cramér-Rao lower bound. 
 
Consider the measurements Nz R∈  obtained from a system described by a 
hypothetical, exact model that is parameterized in θ . These measurements are disturbed 
by noise and are hence stochastic variables that are characterized by a probability 
density function ( )0f z θ  that depends on the exact model parameters 0θ  with 

( )0 1Nz R
f z dzθ

∈
=∫ . Next we can interpret this relation conversely, viz., how likely is 

it that a specific set of measurements mz z=  are generated by a system with parameters 
θ ? In other words, we consider now a given set of measurements and view the model 
parameters as the free variables: 
 
( ) ( )m mL z f z zθ θ= =  (5) 

 
with θ  the free variables. ( )mL z θ  is called the likelihood function. In many 

calculations the log likelihood function ( ) ( )( )lnl z L zθ θ=  is used. In (5) we used mz  

to indicate explicitly that we use the numerical values of the measurements that were 
obtained from the experiments. From here on we just use z  as a symbol because it will 
be clear from the context what interpretation should be given to z . The reader should be 
aware that ( )L z θ  is not a probability density function with respect to θ  since 

( ) 1L z d
θ

θ θ ≠∫ . Notice the subtle difference in terminology, i.e. probability is replaced 

by likelihood. 
 
The Cramér-Rao lower bound gives a lower limit on the covariance matrix of 
parameters. This limit is universal and independent of the selected estimator: no 
estimator that violates this bound can be found. It is given by 

( ) ( )

( ) ( ) ( ) ( )

1
0 0

2

0 2{ } { }

T

n n

T

b b
CR I Fi I

l z l z l z
Fi E E

θ θ

θ θθ θ
θ θ

θ θ θ
θ

θ θ θ

−∂ ∂⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂ ∂
= = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (6) 
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The derivatives are calculated in 0θ θ= , and { } 0
ˆb Eθ θ θ= −  is the bias on the 

estimator. 
 

( )Fi θ  is called the Fisher information matrix: it is a measure for the information in an 
experiment: the larger the matrix the more information there is. In (6) it is assumed that 
the first and second derivatives of the log likelihood function exist with respect to θ .  
 
Adding additional parameters to a model increases the minimum attainable uncertainty 
on it; the Cramér-Rao lower bound will increase. Of course, these parameters may be 
needed to remove systematic errors so that a balance between stochastic errors and 
systematic errors is achieved.  
 
This problem is studied in the model selection step of the identification procedure. 
 
The Cramér-Rao bound is used to verify the efficiency of an estimator. 
 
•  (efficiency): An unbiased estimator is called efficient if its covariance matrix is 

smaller than that of any other unbiased estimator. 
 
An unbiased estimator that reaches the Cramér-Rao lower bound is also an efficient 
estimator. For biased estimators, the generalized expression should be used. 
 
2.3. A Statistical Approach to the Estimation Problem 
 
From the resistance example, it turns out that an intuitive approach to a parameter 
estimation problem can cause serious errors without even being noticed. To avoid 
severe mistakes, a theoretical framework is needed. Here a statistical development of 
the parameter estimation theory is made.  
 
Often, four related estimators are studied: the least squares (LS) estimator, weighted 
least squares (WLS) estimator, maximum likelihood (ML) estimator and, finally, the 
Bayes estimator.  
 
It should be clear that as mentioned before, it is still possible to use other estimators, 
like the least absolute values. However, a comprehensive overview of all possible 
techniques is beyond the scope of this chapter. For these reasons we focus on the LS, 
WLS and ML estimator because we will use these later on in this section. 
 
To use the Bayes estimator, the a priori  pdf of the unknown parameters and the pdf of 
the noise on the measurements are required. Although it seems, at first, quite strange 
that the parameters have a pdf, we use this concept regularly in daily life, where we 
combine observations with our past experience that indicates to us that some results or 
more probable than others.  
The ML estimator only requires knowledge of the pdf of the noise on the measurements, 
and the WLS estimator can be applied optimally if the covariance matrix of the noise is 
known. Even if this information is lacking, the LS method is usable. Some of these 
estimators will be explained in more detail in the following sections. 
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