
UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. V - Prediction Error Methods - Torsten Söderström 
 

©Encyclopedia of Life Support Systems (EOLSS) 

PREDICTION ERROR METHODS 
 
Torsten Söderström 
Department of Systems and Control, Information Technology, Uppsala University, 
Uppsala, Sweden 
 
Keywords: prediction error method, optimal prediction, identifiability, ARMAX model, 
consistency  
 
Contents 
 
1. Description 
1.1. Introduction 
1.2. General Linear Dynamic Models 
1.2.1. Introduction  
1.2.2. ARMAX Models 
1.2.3. State Space Models 
1.3. Optimal Prediction 
1.4. Interpretations 
1.5. Implementation Aspects 
1.5.1. Optimization 
1.5.2. Evaluation of Gradients 
1.6. Extensions 
1.6.1. Prefiltering of Data 
1.6.2. Modified Criterion Function 
1.6.3. Using Multistep Prediction Errors  
2. Properties 
2.1. Identifiability 
2.2. Convergence and Consistency 
2.3. Asymptotic Accuracy and Distribution 
2.4. Model Approximation 
Acknowledgement 
Glossary 
Bibliography 
Biographical Sketch 
 
Summary  
 
 A general linear stochastic model is introduced. It will be described how it covers 
various typical special cases, like  
 

• ARMAX models and other black box input-output model, 
• state space models that can be parameterized either by black box 

considerations or by physical insight. 
 
The general linear model can be used also to discuss identifiability. Prediction error 
methods are introduced as a general methodology for estimating the parameters in a 
general linear model. The parameter estimates are obtained by minimization of the 
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sample prediction error variance. The estimates are consistent and have a low 
asymptotic covariance matrix under weak conditions.  
 
1. Description 
 
1.1. Introduction 
 
In this subsection, the class of prediction error methods (PEM’s) will be described. The 
description is confined to the off-line (or batch case), where the parameter vector in a 
general linear model of the following form is estimated:  
 

1 1

,

( ) : ( ) ( ; ) ( ) ( ; ) ( )

( ) ( ) ( )T
t s

M y t G q u t H q e t

Ee t e s

θ θ θ

θ δ

− −= +

= Λ
   (1) 

 
Here, ( )y t is the ny -dimensional output at time t and ( )u t the nu -dimensional input. 
Further, ( )e t is a sequence of independent and identically distributed (iid) random 

variables with zero mean, which is referred to as white noise. Further, 1( ; )G q θ− and 
1( ; )H q θ− are filters of finite order (i.e. rational functions of 1q− ). They have 

dimensions ( | )ny nu  and ( | )ny ny , respectively. 
 
The  parameter vector θ is to be estimated from the available input-output data 

(1), (1),..., ( ), ( )y u y N u N . In practice, one does not use the model Eq. (1) as such, but 
a special case such as an ARMAX model or some suitably parameterized state space 
model. To keep the description general, confine it here to the model Eq. (1) which 
covers deliberately all possible cases.  
 
A model obtained by identification can be used in many ways, depending on the 
purpose of modeling. In many applications the model is used for prediction. Note that 
this is often inherent when the model is to be used as a basis for control system 
synthesis. Most systems are stochastic, which means that the output at time t cannot be 
determined exactly from data available at time 1t − . It is thus valuable to know, 
forecast or predict at time 1t −  what the output of the process is likely to be at time t , 
in order to take an appropriate control action, i.e. to determine the input ( 1)u t − . 
 
It, therefore, makes sense to determine the model parameter vector θ  so that the 
prediction error  
 

ˆ( , ) ( ) ( | 1; )t y t y t tε θ θ= − −       (2) 
 
is small. In Eq. (2), ˆ( | 1; )y t t θ− denotes a prediction of ( )y t given the data up to and 
including time 1t − (i.e. ( 1), ( 1), ( 2), ( 2),...)y t u t y t u t− − − − and based on the 
model parameter vector θ . 
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Now formalize this idea and consider the general model structure introduced in Eq. (1). 
Assume that (0, ) 0G θ = , i.e. that the model has at least one pure delay from input to 
output. The optimal mean square predictor can conceptually be written as 
 

1 1
1 2ˆ( | 1; ) ( ; ) ( ) ( ; ) ( )y t t L q y t L q u tθ θ θ− −− = +     (3) 

 
which is a function of past data only if the predictor filter 1

1( ; )L q θ−  and 
1

2 ( , )L q θ− are constrained by 
 

1 2(0; ) 0, (0; ) 0L Lθ θ= = .      (4) 
 
Once the model and the predictor are given, the prediction errors are computed as in Eq. 
(2). The parameter estimate θ̂ is then chosen to make the prediction errors 

(1, ),..., ( , )Nε θ ε θ small.  
To define a prediction error method the user has to make the following choices: 
 

• Choice of model structure. This concerns the parameterization of 
1 1( ; ), ( ; )G q H qθ θ− − and ( )θΛ in Eq. (1) as functions of θ . 

• Choice of criterion. This concerns a scalar-valued function of all the 
prediction errors (1, ),..., ( , )Nε θ ε θ , which will assess the performance of 
the predictor used; this criterion is to be minimized with respect to θ  to 
choose the “best” predictor in the class considered.  

 
The most common choice of criterion is (for the single-output case) the sample variance 
of the prediction errors 
 

2

1

1( ) ( , )
N

N
t

V t
N

θ ε θ
=
∑ .       (5) 

 
Several modifications exist, though, see subsection 1.6. For multivariable models 
( 1)ny > , the criterion can be modified, for example, as  
 

2

1

1( ) || ( , ) ||
N

N
t

V t
N

θ ε θ
=

= ∑ ,       (6) 

 
but several other alternatives exist as well.  
 
The prediction error estimate of θ  is now defined as the minimizing element of the 
criterion Eq. (5), i.e. 
 

arg minˆ ( )NV
θ

θ θ=         (7) 
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To complete the description, it remains to describe how the prediction errors are to be 
computed for the general linear model, Eq. (1). This is done in subsection 1.5.  
 
1.2. General Linear Dynamic Models 
 
1.2.1. Introduction  
 
In this subsection, general linear models of the form Eq. (1) will be discussed. The 
model will be parameterized by a vector θ , which is to be estimated.  
 
The general form of model structure that will be used is the following 
 

1 1( ) : ( ) ( ; ) ( ) ( ; ) ( ),M y t G q u t H q e tθ θ θ− −= +  

, .( ) ( ) ( )T
t sEe t e s θ δ= Λ       (8) 

The filters 1( ; )G q θ−  and 1( ; )H q θ− as well as the noise covariance matrix ( )θΛ  are 
functions of the parameter vector θ . Often θ  (which is assumed to be nθ -
dimensional) is restricted to lie in a subset of nR θ . This set is given by  
 

1 1 1 1 1and are asymptotically stable{ | ( ; ) ( ; ) ( ; )D H q H q G qθ θ θ θ− − − − −=  
is nonnegative definite       (0; ) 0, (0; ) , ( ) }G H Iθ θ θ= = Λ .   (9) 

 
The reasons for these restrictions in the definition of D  will become clear in the 
following, where it will be shown that when θ  belongs to D , there is a simple form for 
the optimal one step prediction of ( )y t  given past data 

( 1), ( 1), ( 2), ( 2),....y t u t y t u t− − − −  
 
For stationary disturbances with rational spectral densities it is a consequence of the 
spectral factorization theorem, that they can be modeled within the restrictions given by 
Eq. (9).  
 
Eq. (8) describes a general linear model. The following examples describe typical model 
structures by specifying the parameterization. That is to say, they specify how 

1 1( ; ), ( ; )G q H qθ θ− −  and ( )θΛ  depend on the parameter vector θ . 
 
1.2.2. ARMAX Models 
 
Let ( )y t  and ( )u t be scalar signals and consider the model structure  
 

1 1 1( ) ( ) ( ) ( ) ( ) ( )A q y t B q u t C q e t− − −= +      (10) 
 
where 
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1 1
1

1 1
1

1 1
1 .

( ) 1

( )

( ) 1

na
na

nb
nb

nc
nc

A q a q a q

B q b q b q

C q c q c q

− − −

− − −

− − −

= + + +

= + +

= + + +

     (11) 

 
The parameter vector is taken as  
 

1 1 1( ... ... ... )T
na nb nca a b b c cθ = .      (12) 

 
The model Eq. (10) is called an ARMAX model, which is short for an ARMA model 
(AutoRegressive Moving Average) with an eXogenous signal (i.e. a control variable 

( )u t is present). The largest integer of the triple ( , , )na nb nc  is called the model order. 
 
To see how Eq. (10) relates to Eq. (8), note that it can be written as  

1 1

1 1
( ) ( )( ) ( ) ( )
( ) ( )

B q C qy t u t e t
A q A q

− −

− −= + .     (13) 

 
Thus, for the model structure Eq. (10), 
 

1
1

1

1
1

1

2.

( )( ; )
( )

( )( ; )
( )

( )

B qG q
A q

C qH q
A q

θ

θ

θ λ

−
−

−

−
−

−

=

=

Λ =

       (14) 

 
The set D is given by  
 

The polynomial  has all zeros outside the unit circel{ | ( ) }D C zθ=  . (15) 
 
A more standard formulation of the requirement Dθ ∈  is that the reciprocal 
polynomial  
 

1 1
1( ) ( )nc nc nc

ncC z z c z c z C z∗ − −= + + + =     (16) 
 
has all zeros inside the unit circle. 
 
There are several important special cases of Eq. (10):  
 

• An autoregressive (AR) model is obtained when 0nb nc= = . (Then a pure 
time series is modeled, i.e. no input signal is assumed to be present.) For this 
case  
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1( ) ( ) ( )A q y t e t− =  

1 .( ... )T
naa aθ =      (17) 

 
• A moving average (MA) model is obtained when 0na nb= = . Then  

 
1( ) ( ) ( )y t C q e t−=  

 1( ... )T
ncc cθ = .      (18) 

 
• An autoregressive moving average (ARMA) model is obtained when 

0nb = . Then 
 

1 1( ) ( ) ( ) ( )A q y t C q e t− −=  

1 1 .( ... ... )T
na nca a c cθ =      (19) 

 
When 1( )A q− is constrained to contain a factor 11 q−− the model is called 
autoregressive integrated moving average (ARIMA). Such models are useful for 
describing drifting disturbances. 
 
The above three special cases do all apply to a pure time series (there is no input signal). 
Some other special cases are: 
 

• A finite impulse response (FIR) model is obtained when 0na nc= = . It 
can also be called a truncated weighting function model. Then  

 
1

1 .

( ) ( ) ( ) ( )
( ... )nb

y t B q u t e t
b bθ

−= +
=

     (20) 

 
• Another special case is when 0nc = . The model structure then becomes 

 
1 1

.
1 1

( ) ( ) ( ) ( ) ( )

( ... ... )T
na nb

A q y t B q u t e t

a a b bθ

− −= +

=
    (21) 

 
This is sometimes called an ARX (controlled autoregressive) model. This structure can 
also be viewed as a linear regression,  
 

( ) ( ) ( )Ty t t e tϕ θ= + ,       (22) 
 
where  
 

( ) ( ( 1)... ( ) ( 1)... ( ))Tt y t y t na u t u t nbϕ = − − − − − − .  (23) 
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There are some other ways than the ARMAX model to introduce polynomials for linear 
single-input single-output models. If 1( )A q−  and 1( )C q−  in Eq. (10) are constrained 
to coincide, the so-called output error model  
 

1

1
( )( ) ( ) ( )
( )

B qy t u t e t
F q

−

−= +        (24) 

 
is obtained, where all parameters are used to model the filter 1( ; )G q θ− , while there is 
no description in the model of the disturbance.  
 
The linear SISO models, such as ARX and ARMA models, can be extended to the 
multivariable case, but some complications occur in that there is no unique way to 
introduce free parameters. In case all matrix coefficients are left free, the model will 
lose uniqueness and it will then not be possible to identify the parameters, no matter 
what amount of data and what experimental condition is used.  
 
- 
- 
- 
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