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Summary 
 
This chapter considers the problem of estimation of the transfer function of a 
continuous-time dynamic system in the presence of colored noise. Whereas parameter 
estimation can be made by means of a discrete-time maximum-likelihood algorithm, an 
operator transformation permits a continuous-time model parameterization. The method 
is useful in cases where it is important to estimate the coefficients of a continuous-time 
transfer function and to maintain a physical interpretation of the transfer function 
results.   
 
1. Introduction 
 
An accurate knowledge of a continuous-time transfer function is a prerequisite to many 
methods in physical modeling and control system design. System identification, 
however, is often made by means of time-series analysis applied to discrete-time 
transfer function models. As yet there is no undisputed algorithm for parameter 
translation from discrete-time parameters to a continuous-time description. Problems in 
this context are associated with the transformation of the system zeros from the discrete-
time model to the continuous-time model whereas the system poles are mapped by 
means of complex exponentials. As a result, a poor parameter transformation tends to 
affect both the frequency response such as the Bode diagram and the transient response 
such as the impulse response. One source of error in many existing algorithms is that 
computation of the system zeros is affected by the assumed and actual inter-sample 
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behavior of the control variables.  
 
There are two circumstances that favor the traditional indirect approach via discrete-
time identification: Firstly, data are in general available as discrete measurements. 
Another problem is the mathematical difficulty to treat continuous-time random 
processes. In the context of discrete-time measurements, however, it is in many cases 
sufficient to model disturbances as a noise sequence of finite spectral range.  
 
A relevant question is, of course, why there is no analogue to ARMAX models for 
continuous-time systems. One reason is that polynomials in the differential operator can 
not be used for identification immediately due to the implementation problems 
associated with differentiation. The successful ARMAX-models correspond to transfer 
function polynomials in the z-transform variable z or 1z− —i.e., the forward or the 
backward shift operators, with advantages for modeling and signal processing, 
respectively, and translation between these two representations is not difficult. A related 
problem is how to identify accurate continuous-time transfer functions from data and, in 
particular, how to obtain good estimates of the zeros of a continuous-time transfer 
function. The difficulties to convert a discrete-time transfer function to continuous-time 
transfer function are well known and related to the mapping ( ) (log ) /f z z h= .  
 
We derive an algorithm that fits continuous-time transfer function models to discrete-
time data and we adopt a hybrid modeling approach by means of a discrete-time 
disturbance model and a continuous-time transfer function.  
 
2. A model Transformation 
 
This algorithm introduces an algebraic reformulation of transfer function models. In 
addition, we introduce discrete-time noise models in order to model disturbances. The 
idea is to find a causal, stable, realizable linear operator that may replace the differential 
operator while keeping an exact transfer function.  This shall be done in such a way that 
we obtain a linear model for estimation of the original transfer function parameters 

,i ia b . We will consider cases where we obtain a linear model in all-pass or low-pass 
filter operators.  Actually, there is always a linear one-to-one transformation which 
relates the continuous-time parameters and the convergence points for each choice of 
filter.  
 
Then follow investigations on the state space properties of the introduced filters and the 
original model. The convergence rate of the parameter estimates is then considered. 
Finally, there are two examples with applications to time-invariant and time-varying 
systems, respectively. Consider a linear n-th order transfer operator formulated with a 
differential operator /p d dt=  and unknown coefficients ,i ia b .  
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where it is assumed that A and B are coprime. It is supposed that the usual isomorphism 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. V - Continuous-Time Identification - Rolf Johansson 
 

©Encyclopedia of Life Support Systems (EOLSS) 

between transfer operators and transfer functions, i.e. the corresponding functions of a 
complex variable s, is valid. Because of this isomorphism, 0G  will sometimes be 
regarded as a transfer function and sometimes as a transfer operator. A notational 
difference will be made with p denoting the differential operator and s denoting the 
complex frequency variable of the Laplace transform.  
 
It is a necessary requirement on any transfer function that describes a physically 
realizable continuous-time system because pure derivatives of the input cannot be 
implemented. This requirement is fulfilled as 0lim ( )s G s→∞  is finite, i.e., 0 ( )G s  has no 
poles at infinity. An algebraic approach to system analysis may be suggested. Let a be 
point on the positive real axis and define the mapping  
 

( ) af s s
s a

= , ∈
+

 

 
Let = ∪∞  be the complex plane extended with the ‘infinity point’. Then f is a 
bijective mapping from  to  and it maps the ‘infinity point’ to the origin and a−  to 
the ‘infinity point’. The unstable region—i.e., the right half plane ( Re 0s > )—is 
mapped onto a region which does not contain the ‘infinity point’. Introduction of the 
operator  

1( ) 1
1

af p a
p a p

λ τ
τ

= = = , = /
+ +

. (2) 

 
This allows us to make the following transformation  
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with  
 

2
1 2( ) 1 n

nA λ α λ α λ α λ∗ = + + + +  (3) 
2

1 2( ) n
nB λ β λ β λ β λ∗ = + + + . (4)                                             

 
An input-output model is easily formulated as 
 

( ) ( ) ( ) ( )A y t B u tλ λ∗ ∗=  
  
or on regression form  
 

1 1( ) [ ]( ) [ ]( ) [ ]( ) [ ]( )n n
n ny t y t y t u t u tα λ α λ β λ β λ= − − − + + + .  (5) 

 
This is now a linear model of a dynamical system at all points of time. Notice that 
[ ] [ ]u yλ λ,  etc. denote filtered inputs and outputs. The parameters i iα β,  may now be 
estimated by any suitable method for estimation of parameters of a linear model. A 
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reformulation of the model (5) to a linear regression form is 
 

( )1 2 1( ) ( )
TT

n ny t t … …τ τ τϕ θ θ α α α β β= , = ,   (6) 

( )2( ) [ ]( ) [ ]( ) [ ]( ) [ ]( )
Tnt y t y t … u t … u tτϕ λ λ λ λ= − , − , , , .  (7) 

  
 

 
 

Figure 1: Input u and output y 
 
with parameter vector τθ  and the regression vector τϕ . We may now have the 
following continuous-time input-output relations:  
 

0 0 0( ) ( ) ( ) ( ) ( ) ( ) { ( )} ( ( )) ( )y t G p u t G u t Y s y t G s U sλ λ∗ ∗= = , = =L  

( ) ( )Ty t tτ τϕ θ=  

( ) ( ) where ( ) { ( )}( )TY s s s t sτ τ τ τθ ϕ= Φ Φ = L ,    (8) 
 
where L  denotes a Laplace transform. As a consequence of the linearity of the Laplace 
transform, one can conclude that the same linear relation holds in both the time domain 
and the frequency domain. Notice that this property holds without any approximation or 
any selection of data.  
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Example—Estimation of two constant parameters 
 
Consider the system with input u, output y, and the transfer operator 0G  

1
0

1
( ) ( ) ( ) ( )

b
y t G p u t u t

p a
= =

+
  

 
Use the operator transformation λ  of (2) 

1
1 p

λ
τ

=
+

,         (9)                                              

 
This gives the transformed model 
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A linear estimation model of the type (6) is given by 
 

1 1( ) [ ]( ) [ ]( ) ( ) ( )Ty t y t u t t tτ τα λ β λ ϕ θ= − + =      (10) 
  
with regressor ( )tτϕ  and the parameter vector τθ  and 
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The original parameters are found via the relations 
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and their estimates from 
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                                                                                         (13) 

 
Sampling of all variables in Eq. (10) and application of the recursive least-squares 
estimation algorithm is obviously possible. Simulation results for different choices of 
the filter time constant τ  [s] and the sampling interval 0 03h = .  [s] are based on the 
input-output data of Fig. 1. All simulations have started with initial values at zero for 
the parameter estimates and the filters. The simulations have been performed with 

1 2a =  and 1 1b =  and with a square wave as a moderately exciting input, see Fig. 2.  
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The simulations in Fig. 2 indicate that the convergence works properly with accurate 
estimates over at least two decades of values of τ . The convergence rate is faster for a 
shorter τ  but the convergence transient may be violent for ‘too’ short time constants τ . 
Figures 1 and 2 demonstrate convergence rates over a large range of values of the time 
constant τ  and that the convergence rate is higher for small values of τ . The sampling 
rate seems not to be a limiting factor for the convergence rate.  
 

 
 

Figure 2: Estimates 1̂a and 1̂b  
 
The filter constant a (or τ ) of the operator λ  should therefore be regarded as a design 
parameter to be chosen appropriately. As the components of the regression vector τϕ  
tend to become small for high frequency input one should match the filter constant with 
respect to the dynamics of the system investigated.  
 
Remark—Operator Representation Singularities 
 
A relevant question is, of course, how general is the choice λ  and if it can, for instance, 
be replaced by some other bijective mapping  
 

andbs a a ab a s
s a b

μμ
μ

++ −
= , ∈ , ∈ , =

+ −
   (14) 

 
One can treat this problem by considering the example 
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0
1( ) where is smallG s

s a b
= ∈

+ / +
ε

ε
 

Application of the operator translation μ  gives  
 

0 0
1( ) ( )

1( ( 1) )

bG s G
s a b b a

b

μ μ
μ

∗−
= = =

+ / + − + − +ε ε ε
 

 
Obviously, the zero-order denominator polynomial coefficient will vanish for 0=ε  so 
that 0 ( )G μ∗  exhibits a pole at 0z = . The corresponding estimation model would be  
 

1 0
1 1 1 1 1[ ] [ ] [ ] ( ( 1) )[ ] [ ] [ ]ay y u u y u u

b b b b
α μ β μ β μ μ= + + = − + − +

ε ε ε
 

 
which exhibits coefficients of very large magnitudes for small ε . This would constitute 
a serious sensitivity problem — at least for 0b >  for which 0 ( )G s  is stable. An 
operator μ  with 0b <  according to Eq. (14) would give rise to large coefficients of the 
transformed model only for unstable systems which might be more ‘affordable’. By 
comparison, a model transformation using λ  would not exhibit any such singularities.  
 
Hence, use of the operator μ  should for sensitivity reasons be restricted to cases with 

0b =  (or 0minb b< ≤  for some number minb  chosen according to some a priori 
information about the system dynamics). Note that the set of polynomials associated 
with 0b <  is related to the orthogonal Laguerre polynomials.  
 
2.1. Parameter Transformations 
 
Before we proceed to clear cut signal processing aspects we should make clear the 
relationship between the parameters i iα β,  of (5) and the original parameters i ia b,  of 
the transfer function (1). Let the vector of original parameters be denoted by  
 

( )1 2 1
T

n na a … a b … bθ = − − −      (15) 
 
Using the definition of λ  (2) and (5) it is straightforward to show that the relationship 
between (6) and (19) is 
 

F Gτ τ τθ θ= +          (16) 
 
where the 2 2n n× − matrix Fτ  is 
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and where 
 

11

1

0 0
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M m
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τ τ
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   (18) 

 
Furthermore, the 2 1n× − vector Gτ  are given by 
 

( )1 0 0 ( 1)T i
n i

n
G g … g … g

iτ
⎛ ⎞

= ; = −⎜ ⎟
⎝ ⎠

    (19) 

 
The matrix Fτ  is invertible when Mτ  is invertible, i.e. for all 0τ > . The parameter 
transformation is then one-to-one and 
 

1( )F Gτ τ τθ θ−= −  
 
We may then conclude that the parameters i ia b,  of the continuous-time transfer 
function 0G  may be reconstructed from the parameters i iα β,  of τθ  by means of basic 
matrix calculations. As an alternative we may estimate the original parameters i ia b,  of 
θ  from the linear relation 
 

( ) ( ) ( ) ( )T Ty t t F G tτ τ τ τ τθ ϕ θ ϕ= = +       (20)  
 
where Fτ  and Gτ  are known matrices for each τ . Furthermore, elaborated 
identification algorithms adapted for numerical purposes sometimes contain some 
weighting or orthogonal linear combination of the regression vector components by 
means of some linear transformation matrix T. Thus, one can modify (24) to 
 

( ) ( ( )) ( ( ))T T T Ty t T t T F T t T Gτ τ τ τϕ θ ϕ− −= +  
 
Hence, the parameter vectors τθ  and θ  are related via known and simple linear 
relationships so that translation between the two parameter vectors can be made without 
any problem arising. Moreover, identification can be made with respect to either θ  or 
τθ .  
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