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Summary 
 
Prediction error techniques for joint identification of parametric transfer functions and 
noise models from measured data are considered. The time domain and frequency 
domain prediction error methods are presented and compared and their close connection 
with corresponding maximum-likelihood method is explored. Conditions are established 
under which the two techniques are asymptotically equivalent.  
 
1. Introduction  
 
Building mathematical models based on measured input and output signals of a 
dynamical system is known as system identification. Such models based on empirical 
information are important if the dynamical system is unknown or is only partially 
known and when it is in-feasible to derive a theoretical model from first principles. The 
availability of accurate models is important in order to derive high performance 
solutions, e.g., for model based control design or model based signal processing 
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Almost all measurements originating from real world devices intrinsically belong to the 
time domain, i.e. are samples of continuous time signals. Consequently a large part of 
the system identification methods and the theory developed around them deals with how 
to determine parametric models from such time domain measurements. Using samples 
of the Fourier transform of signals, here called frequency domain data, to build models 
is an alternative technique which has been frequently used for non-parametric estimates 
of the system transfer function.  
 
A discussion of techniques to fit parametric models to noisy frequency domain data is 
the scope of this chapter. Such techniques can be traced back to the mid 1950s when 
Whittle combined classical inferential procedures, e.g. maximum-likelihood (ML) 
estimation, with spectral theory for time-series analysis.  
 
A distinctive feature of frequency domain techniques is that modeling of continuous 
time systems from sampled data can be done in a straightforward fashion if a certain 
class of band-limited excitation signals is employed. This is a great advantage in 
contrast with the rather involved time domain techniques which, even in the noise free 
case, are only approximate if a finite set of sampled data is available. We will here 
however completely focus on the discrete time case and refer to Estimation with known 
Noise Model and Continuous-time Identification for more information on the continuous 
case.  
 
The aim this chapter is to briefly introduce the time domain and frequency domain 
prediction error methods and highlight their close relation and present their own unique 
properties. More information regarding system identification in general can be found in 
Frequency Domain System Identification and Prediction error methods. 
 
1.1. Problem Formulation 
 
Let us assume that we are interested in obtaining a model of a system that can be 
described by the following linear time-invariant form  
 

0 0( ) ( ) ( ) ( ) ( )y t G q u t H q e t= +  (1) 
 
where ( ), ( )y t u t  and ( )e t  are the real valued output, input and noise signals, 
respectively. The operators 0 ( )G q  and 0 ( )H q  represent the discrete time linear transfer 
functions. We assume that 0H  is a stable an inversely stable monic filter. The noise 
signal ( )e t  is assumed to be independent and identically distributed (i.i.d.) and zero 
mean with variance 0λ  and independent of the input signal ( )u t . Later in Section 2.4 
we will discuss the closed loop case where ( )u t  and ( )e t  are dependent through a 
feedback controller. The presentation is limited to the single input single output case 
where ( )u t  and ( )y t  are scalar valued quantities.  
 
1.2. Frequency Domain System Relations 
 
Let us define the discrete Fourier transform (DFT) of the signal 1{ ( )}N

kx t =  as  
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From the system relation (1) it is well known that  
 

0
1( ) ( ) ( ) ( ) ( )j

N N NY G e U V O
N

ωω ω ω= + +  (2) 

 
where NV  is asymptotically complex normally distributed with zero mean and variance 

2
0 0( ) | ( ) |j

v H e ωω λΦ . Furthermore, as , ( )NN V ω→∞  and ( )NV ξ  are 
asymptotically independent whenever ω ξ≠  and ( ) mod 2 0ω ξ π+ ≠ . 
 
Asymptotically as N →∞  we can consider the following frequency domain system 
equation to hold  
 

0 0( ) ( ) ( ) ( ) ( )j jY G e U H e Eω ωω ω ω= + . (3) 
 
where Y  and U  are the weak limits of NY  and NU  and 0E  are the frequency domain 
innovations which are zero mean complex normally distributed with variance 0λ . 
 
In our setup we assume that we can sample the relation (3) at a sequence of frequencies 
in the set 1{ }N

N k kω =Ω =  yielding the set { , | 1,..., }N
k kZ Y U k N= =  where ( )k kU U ω=  

and ( )k kY Y ω= . Hence, kY  is a complex normally distributed random variable with 
mean 0, k kG Uω  and variance ( )v kωΦ . Notice that the frequencies kω  in the set NΩ  can 

have an arbitrary distribution. In practice these samples are obtained by the DFT and 
most often on the equidistant frequency grid 2 /k k Nω π= , for 0,..., 1k N= − .  
 
Since the transformation of a signal from time to frequency domain using the DFT is 
nothing but a unitary transformation it might appear, at first sight, that nothing is gained 
by considering the estimation problem in the frequency domain. However, an important 
difference arises when the noise is colored. i.e. when ( ) 1H q ≠ . In this case the samples 
of the system output ( )y t  will be statistically dependent.  
 
The unitary transformation, represented by the DFT, asymptotically decuples this 
statistical dependence. That is, in the frequency domain each sample is asymptotically 
(as the number of time domain data points tends to infinity) independent of the others. 
This provides an increased flexibility in the selection of which data to use for the 
estimation and the ability to combine data from different time domain experiments. If 
the noise transfer function 0 ( )H q  is known, the input and output time domain data can 

be pre-filtered with the filter 1
0( )H q − . Such an operation, which is also known as pre-

whitening, will make the pre-filtered time domain samples white, i.e. statistically 
independent.  



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. V - Relations Between Time Domain and Frequency Domain 
Prediction Error Methods - Tomas McKelvey 
 

©Encyclopedia of Life Support Systems (EOLSS) 

2. Prediction Error Methods 
 
The aim is to find a model of (1) and to do so we construct a parameterized model  
 

( ) ( ) ( ) ( ) ( )y t G q u t H q e tθ θ= +  (4) 
 
where the transfer functions ( )G qθ  and ( )H qθ  are models of the system and noise 
transfer functions. The transfer functions are parameterized by a real valued vector θ . 
Let DM denote the set of valid parameters. We assume ( )H qθ  is a stable and inversely 
stable monic transfer function for all Dθ ∈ M .we impose no particular structure on how 
the parameters enter into ( )G qθ  or ( )H qθ  and this enables the use of various 
parameterizations such as fraction of polynomials or state-space models. Hence, 
parameterized gray-box models which are partially unknown can also be used. To 
simplify notation in the sequel let 0, 0 ( )jG G e ω

ω  and , ( )jG G e ω
θ ω θ  and similarly 

for the noise transfer function H . 
 
2.1. Time Domain  
 
Suppose input-output data in the time domain are given  
 

{ ( ), ( ) | 1,..., }Nz y t u t t N= =  
 
From the model (4) we can define the one-step ahead predictor 
 

1 1ˆ( | ) ( ) ( ) ( ) ( ( ) ) ( )y t H q G q u t I H q y tθ θ θθ − −= + − . 
 
The prediction error are defined as 
 

1ˆ( , ) ( ) ( | ) ( ) ( ( ) ( ) ( ))t y t y t H q y t G q u tθ θθ θ −= − = −E  
 
 and would equal the white noise ( )e t  if the output ( )y t  was indeed generated by the 
model and for some sequences ( )u t  and ( )e t . The prediction error method (PEM) finds 
the model parameter θ  by minimizing the sample variance of the prediction errors: 
 

TD 2 1 2

1 1
TD

TD

1( ) | ( , ) | | ( ) ( ( ) ( ) ( )) |

ˆ arg min ( )

ˆ ˆ( )

N N

N
k k

N N

N N N

V t H q y t G q u t
N

V

V

θ θ

θ

θ θ

θ θ

λ θ

−

= =
= = −

=

=

∑ ∑E

 (5) 

 
where ˆ

Nλ  is the estimate of the variance of ( )e t . Notice that the prediction errors are 

the deterministic system errors ( ) ( ) ( )y t G q u tθ−  filtered through the inverse of the noise 
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model. If ( )e t  is normally distributed zero mean random variables with covariance λ , 
the prediction error method estimator is the maximum-likelihood estimator of θ  if all 
initial conditions of the system and noise filters are zero. Hence it is often called the 
conditional maximum –likelihood estimator. Finally by applying Parseval’s formula to 
the criterion function in (5) reveals that the PEM estimator minimizes the function 
 

2
,

2
,

| ( ) ( ) |

| |
N NY G U

d
H

π θ ω
π

θ ω

ω ω
ω

−

−
∫ . (6) 

 
Please refer to Prediction Error Method for a more thorough treatment of the class of 
time domain prediction error methods. 
 
- 
- 
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