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Summary 
 
The article outlines the development of time variable parameter (TVP) estimation as an 
approach to modeling nonstationary dynamic systems. It then describes one of the latest 
methods for estimating time variable parameters in dynamic auto-regressive, exogenous 
variables (DARX) and dynamic transfer function (DTF) models. In the case of DARX 
models, the estimation methodology is based on standard recursive filtering and fixed 
interval smoothing algorithms. 
 
 In the DTF case, however, it is a combination of special recursive instrumental variable 
filtering and fixed interval smoothing algorithms. The practical utility of the various 
estimation algorithms is demonstrated by two examples. The first is a simulation 
example that illustrates well the advantages of DARX estimation when compared with 
earlier TVP estimation algorithms based on exponential forgetting. The second is a 
practical example of DTF estimation based on a well known set of gas furnace data. 
 
1. Introduction 
 
In 1960, Rudolf Kalman published his seminal paper on recursive state variable 
estimation and what has since come to be known, almost universally, as the Kalman 
filter (KF). This produced a revolution in estimation theory and practice, first in the 
control and systems literature, and subsequently in most other areas of engineering, 
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science and the social sciences. Amongst many other things, it stimulated a growing 
interest in how recursive estimation methods could be exploited to model time varying 
or ‘nonstationary’ systems. The original motivation for this Time Variable Parameter 
(TVP) estimation research was the modeling of nonstationary dynamic processes and 
the use of such recursive algorithms in adaptive control system design. However, a later 
motivation has been its use as a tool in adaptive forecasting and signal processing. 
 
Amongst the different approaches to TVP estimation, the following three are deserving 
of most attention: 
 

1. The Extended (or Re-linearized) Kalman Filter (EKF) 
 

Here, the stochastic state space model of the dynamic system is extended to 
include simple stochastic models for the TVPs (e.g. the simple random walk 
model: see Section 3).The resulting model is nonlinear because the original 
system state variables are multiplied by the state variables arising from the 
adjoined TVPs. As a result, the state estimates of this nonlinear model are then 
updated by a KF-type algorithm with the equations linearized in some manner at 
each recursive update, based on the current recursive parameter estimates.  
 

2. Shaping the Memory of the Algorithm 
 

Here, the predecessor of the KF, the recursive algorithm developed by K. F. 
Gauss in the nineteenth century for estimating the constant parameters in linear 
regression models, is modified to include a ‘forgetting factor’ or ‘weighting 
kernel’ that shapes the memory of the estimator and so allows for TVP 
estimation. This is much the most popular approach to TVP estimation but its 
performance is rather limited when compared with approach 3, below. 
 

3. Modeling the Parameter Variations 
 

Here, the roles of the state equations and observation equations are reversed. The 
model of the system now appears in the observation equation and the state 
equations are used to model the TVPs appearing in this model, again using 
simple stochastic models such as the random walk. This is the most 
sophisticated and flexible approach and represents the current state-of-the-art in 
TVP estimation. 

 
Until comparatively recently, the main emphasis in all three of these approaches has 
been the ‘on-line’ or ‘real-time’ estimation of the TVPs. As a result, most algorithms 
have been of the ‘filtering’ type, where the estimate âk|k  of the TVP vectorak , at any 

sampling instantk , is a function of all the data up to and including this thk  instant. 
Surprisingly, given its ultimate power, the extension of these methods to the ‘off-line’ 
analysis situation was not considered very much at first, despite the fact that a 
mechanism of such ‘smoothing’ estimation was available in the form of various fixed 
interval smoothing (FIS) algorithms and publications on this subject. Here, the FIS 
estimate âk|N  of ak  is based on all of the data available over a ‘fixed interval’ of N 
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samples, usually the full sample length of the time series data. Later research placed this 
approach in an optimal context based on maximum likelihood estimation of the 
associated ‘hyperparameters’ (see Section 3. below). 
 
2. Simple Limited Memory Algorithms 
 
Before illustrating the value of a unified, statistical approach to TVP estimation based 
on modeling the parameter variations, it is instructive to take a brief look at the less 
sophisticated, deterministic algorithms based on explicitly restricting the memory of the 
recursive estimation algorithm. For simplicity, let us consider a single input, single 
output system (although the extension to multi-input systems is straightforward). In the 
case of a TVP or Dynamic Transfer Function (DTF) representation (The term ‘dynamic’ 
is used here for historical reasons, primarily because the parameters are defined as 
evolving in a stochastic, dynamic manner.), the model takes the following form:  
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where ku  and ky  are, respectively, the input and output variables measured at the 
thk sampling instant; 1−z is the backward shift operator, i.e,. r− =k k-rz y y ; and 1( , )A −z k  

and 1( , )B −z k  are time variable coefficient polynomials in 1−z of the following form: 
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The term δ  is a pure time delay, measured in sampling intervals, which is introduced to 
allow for any temporal delay that may occur between the incidence of a change in 
ku and its first effect on ky . Finally, kξ represents uncertainly in the relationship arising 

from a combination of measurement noise, the effects of other unmeasured inputs and 
modeling error. Normally, kξ is assumed to be independent of ku  and is modelled as an 
AutoRegressive (AR) or AutoRegressive-Moving Average (ARMA) stochastic process, 
although this restriction can be avoided by the use of instrumental variable methods, as 
discussed below. 
 
In the more restricted case of the Dynamic Auto-Regressive, Exogenous variables 
(DARX) model kξ  
is defined as 
 

1( , )
e

A −=k k
z k
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1 , 

 
where ek  is assumed to be zero mean white noise. This has the advantage that equation 
(1) can be written in the following alternative vector equation or ‘regression’ form: 
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T e= +z pk k k ky              (3) 
 
where now,  

1 2

1, 2, , 0, 1, ,

1, 2, 1,

... ...

... ...

...

T

T

u

a a a b

δ δ− − − − − −

+ +

⎡ ⎤= − − −⎣ ⎦

⎡ ⎤= ⎣ ⎦

⎡ ⎤= ⎣ ⎦

z

p

T
k k k k n k k m

k k k n k k k m k

k k n m k

y y y u

b b

p p p

            (4) 

 
If we wish to limit the memory of the estimation algorithm, it is necessary to specify the 
nature of the memory process. Two main memory functions have been suggested: 
Rectangular Weighting-into-the-Past (RWP); and Exponential-Weighting-into-the-Past 
(EWP). The latter approach is the most popular and can be introduced into the least 
squares problem formulation by considering an EWP least squares cost function 

2
EWPJ of the form, 
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where 1.00<λ< is a constant related to the time constant eT  of the exponential 
weighting by the expression =λ k( ) exp ( )eT−k tΔ , and tΔ  is the sampling interval in 

time units appropriate to the application. Of course, with =λ 1.0, 2
EWPJ becomes the 

usual, constant parameter, least squares cost function 2J . 
 
The recursive algorithm derived by the minimization of the EWP cost function (5) takes 
the following form: 
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This estimation algorithm is one form of the recursive EWP least squares algorithm, 
although other forms are possible. These can all be considered in terms of the EWP 
coefficientλ , or ‘forgetting factor’ as it is often called. Amongst the possibilities are 
constant trace algorithms, the use of adaptive forgetting factors, including start-up 
forgetting factors; and Directional Forgetting (DF). In the latter DF algorithm, the Pk  
matrix update takes the form: 
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where a typical choice for kr  is,  
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in which ∗λ  plays a similar role to λ  in the EWP algorithm (6). 
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