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Summary 
 
In a series of articles, basic principles and results of linear system identification 
techniques in the time domain are described. This powerful methodology for modeling 
dynamic systems has found applications in many areas. Various ways to introduce 
parameters to be estimated in the models will be described as well as some standard 
estimation methods. 
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1. What Is System Identification? 
 
The field of modeling dynamic systems from experimental data is called system 
identification. This is an interdisciplinary area where major developments have been 
carried out in control theory, signal processing, statistics and time series analysis, as well 
as in various application areas. 
 
A dynamic system can be conceptually described as in Figure 1. The system is controlled 
by input variables u(t), which often can be designed by the user. It is also affected by the 
disturbances v(t). In some signal processing applications, the inputs may be absent. The 
output signals are measured variables, which provide useful information about the system. 
For a dynamic system, the control action at time t will influence the output at future time 
instants. 
 
1.5. The Need of Mathematical Models 
 
Mathematical models of dynamic systems are needed in many areas and for various 
reasons. 
 
There are many industrial processes, for example production of paper, iron, glass or 
chemical compounds that must be controlled in order to run safely and efficiently. For an 
accurate regulator design, some type of model of the process is needed. The models can 
be of various types and of various degrees of sophistication. For design of a simple 
regulator, it may be sufficient to know the crossover frequency and the phase margin in a 
Bode plot (showing the frequency response). In other cases, such as the design of an 
optimal controller, the designer will need a much more detailed model, which also 
includes the properties of the disturbances. 
 

 
 

Figure 1: A dynamic system with input u(t), output y(t) and disturbance v(t), where t 
denotes time. 

 
Signal processing is nowadays applied in many areas such as forecasting, data 
communication, speech processing, radar, sonar and electrocardiogram analysis. The 
recorded data are filtered in some way and a good design of the filter should reflect the 
properties (such as high-pass characteristics, low-pass characteristics, existence of 
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resonance frequencies, etc) of the signal. To describe such spectral properties, a model of 
the signal is needed. 
 
Often the primary aim of modeling is to aid in design. In other cases, the knowledge of a 
model can itself be the purpose, as for example when describing the effect of a drug. If the 
models can explain measured data satisfactorily, they might also be used to explain and 
understand the observed phenomena.  
 
In a more general sense, modeling is used in many branches of science as an aid to 
describe and understand reality. 
 
It may also be interesting to model a technical system that does not exist, but may be 
constructed at some time in the future. In addition, in such a case, the purpose of modeling 
is to gain insight into and knowledge of the dynamic behavior of the system.  
 
An example is a large space structure, where the dynamic behavior cannot be deduced by 
studying structures on earth, because of gravitation and atmospheric effects. Needless to 
say, for examples like this, the modeling must be based on theory and a priori knowledge, 
since experimental data are not available. 
 
1.6. Classification of Models 
 
Models of dynamic systems can be of many kinds. 
 

• Mental, intuitive or verbal models. For example, this is the form of “model” 
used when driving a car (“turning the wheel causes the car to turn”, “pushing 
the brake decreases the speed”, etc). 

• Graphs and tables. A Bode plot of a servo system is a typical example of a 
model in a graphical form. The step response, i.e. the output of a process 
excited with a step as input, is another type of model in graphical form. Such 
models can give useful information about the dynamic properties of a process. 

• Mathematical models. Although graphs may also be regarded as 
“mathematical” models, here mathematical models are confined to 
differential and difference equations. Such models are very well suited to the 
analysis, prediction and design of dynamic systems, regulators and filters. 
This type of model is predominantly used in system identification. 

 
It should be stressed that although speaking generally about systems with inputs and 
outputs, the discussion here is to a large extent applicable also to pure time series analysis 
with only one signal being available.  
 
Signal models for time series can be useful in the design of spectral estimators, predictors 
or filters that adapt to the signal properties. 
 
1.7. Mathematical Modeling 
 
Basically, there are two ways of constructing mathematical models: 
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• Mathematical modeling. This is an analytic approach. Basic laws from 
physics (such as Newton’s laws and balance equations) are used to describe 
the dynamic behavior of a phenomenon or a process. 

• System identification. This is an experimental approach. Some experiments 
are performed on the system; a model is then fitted to the recorded data by 
assigning suitable numerical values to its parameters. 

 
System identification is mostly applied to “black box” models. However, it is also 
possible to combine the two techniques, and include detailed a priori information about 
structure and parameter values when fitting a model to data. 
 
Models obtained by system identification have the following properties, in contrast to 
models based solely on mathematical modeling: 
 

• They are less general (they are valid for a certain working point, a certain type 
of input, a certain process, etc). 

• They give little physical insight, since in most cases the parameters of the 
model have no direct physical meaning. The parameters are used only as tools 
to give a good description of the system’s overall behavior. 

• They are relatively easy to construct and to use. (Enough physical insight may 
not be available for a pure mathematical modeling.) 

 
1.8. Applying System Identification 
 
An identification experiment is performed by exciting the system (using some sort of 
input signal such as a step, a sinusoid, or a random signal) and observing its input and 
output over a time interval.  
 
These signals are normally recorded and stored in a computer for subsequent 
“information processing”. Then, a parametric model of the process is fitted to the 
recorded input and output sequences.  
 
The first step is to determine an appropriate form of the model (typically a linear 
difference equation of a certain order). As a second step, a statistically based method is 
used to estimate the unknown parameters of the model (such as the coefficients in the 
difference equation).  
 
The estimation of structure and parameters are often done iteratively. A tentative 
structure is first chosen and the corresponding parameters are estimated. 
 
 The model obtained is then tested to see whether it is an appropriate representation of the 
system. If this is not the case, a more complex model structure must be considered, its 
parameters estimated, the new model validated, etc.  
 
The procedure is illustrated in Figure 2. Note that the “restarts” after the model validation 
phase give an iterative scheme. 
 
It is stressed that model validation is a key step when applying system identification. In 
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this paper, we focus on parameter estimation methods, while model validation is treated 
elsewhere. 
 

 
 

Figure 2: Schematic flowchart of system identification 
2. The Setup 
 

2.3. Some Basic Concepts 
 
This section introduces some basic concepts that are valuable when describing and 
analyzing identification methods. The importance of these concepts will be demonstrated 
later by some simple examples. 
 
The result of an identification experiment will be influenced by (at least) the following 
four factors, which will be discussed further in what follows. 
 

• The system S. The physical reality that provides the experimental data will 
generally be referred to as the process. In order to perform a theoretical 
analysis of an identification, it is necessary to introduce assumptions on the 
data. The word system will be used in such cases, to denote a mathematical 
description of the process. In practice, where real data are used, the system is 
unknown and can even be an idealization. For simulated data, however, it is 
not only known but also used directly for the data generation in the computer.  
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The way ‘system’ is used here, is fairly standard within the literature on system 
identification. In some other contexts, it might fit better to label the idealized 
mathematical description as ‘process model’ or ‘system model’. Then, of course the term 
‘true system’ would just mean the ‘system model with the true parameter vector’.  
 
Note that to apply identification techniques it is not necessary to know the system. The 
system concept is used here only for investigating how different identification methods 
behave under various circumstances. For that purpose, the concept of a “system” will be 
most useful. 
 

• The model structure M. Sometimes nonparametric models are applied. Such 
models are described by curves, functions or tables. A step response is a 
simple example. It is a curve that carries some information about the 
characteristic properties of a system. Impulse responses and frequency 
diagrams (Bode plots) are other examples of nonparametric models. In many 
cases, however, it is relevant to deal with parametric models. Such models are 
characterized by a parameter vector, which will be denoted by θ. The 
corresponding model will be denoted M (θ). When θ is varied over some set of 
feasible values, one obtains a model set (a set of models), or a model structure 
M. 

• The identification method I. A large variety of identification methods have 
been proposed in the literature. Some important ones will be discussed later. It 
is worth mentioning here that several proposed methods could and should be 
regarded as versions of the same basic approach, tied to different model 
structures, even if they were originally introduced and are known under 
different names. 

• The experimental condition X. In general terms, X is a description of how the 
identification experiment is carried out. This includes the selection and 
generation of the input signal, possible feedback loops in the process, the 
sampling interval, prefiltering of the data prior to estimation of the parameters, 
etc. 

 
Of the four concepts, S, M, I, X, the system S must be regarded as fixed. It is “given” in the 
sense that its properties cannot be changed by the user. The experimental condition X is 
determined when the data are collected from the process. It can often be influenced to 
some degree by the user. 
 
However, there may be restrictions - such as safety considerations or requirements of 
“nearly normal” operations - that prevent a free choice of the experimental condition X. 
Once the data are collected, the user can still choose the identification method I and the 
model structure M. Several choices of I and M can be tried on the same set of data until a 
satisfactory result is obtained. 
 
2.4. Identifiability 
 
The concept of identifiability can be introduced in a number of ways, but the following is 
convenient for the present purposes. 
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When an identification method I is applied to a parametric model structure M, the 
resulting estimate is denoted by ˆ( ; , , , )N S M I Xθ . Clearly, the estimate will depend not 
only on I and M but also on the number of data points N, the true system S and the 
experimental condition X. 
 
To describe what we want to identify, assume that the true system S is linear, discrete time 
and can be described as 
 

 
1 1

, '

( ) ( ) ( ) ( ) ( )
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Then, the set of “desirable filters”, DT (S, M ) can be formally defined as 
 
 1 1 1 1( , ) { | ( ; ) ( ), ( ; ) ( ), ( ) . }.T s s sD S M G q G q H q H qθ θ θ θ− − − −= ≡ ≡ Λ ≡ Λ  (2) 
 
This set thus describes precisely those parameter vectors that give a perfect description of 
the process. Three cases may occur: 
 

1. DT (S, M ) is empty. Then, the model parameterization is too simple to 
describe the system. This is called underparameterization. (It is, of course, the 
most likely outcome in practice.) 

2. DT (S, M ) has precisely one point, say θo. This is the best possible case. We 
can call θo the true parameter vector. 

3. DT (S, M ) consists of more than one point. This is called overparametrization. 
This situation occurs if a too high model order is chosen (leading to pole zero 
cancellations) or if too many free parameters are entered in a state space 
model. 

 
Now assume that the set DT (S, M ) is non-empty. We then say that the system S is system 
identifiable under M, I and X, abbreviated SI(M, I, X ), if 
 
 ˆ( ; , , , ) ( , ) as TN S M I X D S M Nθ → →∞  (3) 
 
(with probability one). If DT (S, M ) contains more than one point then the shortest 
distance between the estimate θ̂  and the set DT (S, M ) of all parameter vectors describing 
G(q−1) and H(q−1) exactly, tends to zero as the number of data points tends to infinity. 
 
We say that the system S is parameter identifiable under M, I and X, abbreviated PI(M, I, 
X ), if it is SI(M, I, X ) and DT (S, M ) consists of exactly one point. This is the ideal case. 
If the system is PI(M, I, X ) then the parameter estimate θ̂  will be unique for large values 
of N and also consistent (i.e. θ̂  converges to the true value, as given by the definition of 
DT(S, M )). 
 
Here the concept of identifiability has been separated into two parts. Firstly, the 
convergence of the parameter estimate θ̂  to the set DT (S, M ) (i.e. system identifiability) 
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is a property that basically depends on the identification method I and the experimental 
condition X. Secondly, the role of the model structure M lies in the set DT (S, M ). 
 
Other treatments of identifiability consider basically the properties of the set DT (S, M ), 
which ideally should have just one point, corresponding to the true parameter vector. 
Such an approach may be useful in the deterministic case. It would then describe the 
possibility to recover the true system properties uniquely from the input-output data, 
without specifying any particular identification method. 
 
- 
- 
- 
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