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Summary 
 
This article presents a survey of various methods for nonparametric identification of 
nonlinear systems. Nonparametric identification methods are those that measure Wiener 
kernels or Volterra kernels, since an output of a nonlinear system can be described by 
the convolution integral of Wiener or Volterra kernels and the system input. Section 1 
highlights the representation methods of nonlinear systems by kernels including mutual 
relationships between Wiener kernels and Volterra kernels.  
 
Section 2 describes identification methods for Wiener kernels including Wiener’s 
orthogonal expansion method and Lee-Schetzen’s correlation method. Section 3 covers 
the identification method of Volterra kernels including Hooper-Gyftopoulos’ correlation 
method, Watanabe-Stark’s othonormal basis function method, and Kashiwagi-Sun’s M-
sequence correlation method. For each method, comments are made on the 
computational load from a practical application point of view. 
 
1. Introduction 
 
System identification methods are divided into two groups: parametric and 
nonparametric. Parametric methods identify system model with an underlying 
mathematical structure that is associated with a coefficient set or parameters, whereas 
nonparametric methods model a system directly with its responses. 
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Let us take an example in a linear system. A method for obtaining a transfer function of 
a system is a parametric method. The system parameters in this case are coefficients of 
the transfer function, and the number of parameters is less than or equal to 2n  + 1 
where n  is the order of the system. In the same way, a state equation or a difference 
equation method belongs to the parametric group. In contrast, a method for obtaining an 
impulse response, step response or frequency response of the system belongs to the 
nonparametric group. 
 
Similarly, identification methods for nonlinear systems are also divided into the 
parametric and nonparametric groups. Nonparametric methods of nonlinear system 
identification include those system representation methods using Volterra kernels or 
Wiener kernels. Hence a nonparametric method for nonlinear system identification 
usually means a method for obtaining Volterra kernels or Wiener kernels. 
 
In this article, identification methods for obtaining Volterra kernel or Wiener kernel of a 
nonlinear control system are described in detail. (For parametric methods of nonlinear 
system identification, see articles under the topic entitled Identification of Nonlinear 
Systems.) 
 
2. Representation of Nonlinear Systems 
 
Let ( )u t  be an input to a nonlinear system and ( )y t  be its output. Then the output 

( )y t  can be in general written as follows. 
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and 1 2( , ,... )i ih τ τ τ  is called the Volterra kernel of the i-th order. 
 
The basis of Eq. (1) is due to Frechet (1910) who showed that any continuous functional 
can be represented by a series of functionals of integer order whose convergence is 
uniform on all compact sets of continuous functions. Hence Eq. (1) applies to those 
nonlinear systems whose output is continuous for a continuous input. Therefore we 
should note that Eq. (1) does not apply to those nonlinear systems that have a multi-
valued nonlinearity like hysteresis, backlash or an on-fading memory. However we 
should also note that most nonlinear systems are considered to be representable by Eq. 
(1). 
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Another representation method for nonlinear system via kernel method, when the input 
( )u t  is a white Gaussian signal, is the Wiener kernel method as shown in the following 

equation. 
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where nG  is called the Wiener G-functional, with orthogonal properties given by the 

next two equations. 
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Here nk  is called the n-th order Wiener kernel and the bar over m nG G  denotes the time 
average over the interval ( , ).−∞ ∞  Eq. (4) shows that Wiener G-functionals are 

orthogonal to each other. Equation (5) shows that [ ]; ( )n nG k u t  is orthogonal to 

[ ]( )mH u t  when m n< . The first four terms of the Wiener G-functional are 
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Here 1(3) 1( )k τ  is called the derived Wiener kernel from the third Wiener kernel 

3 1 2 3( , , )k τ τ τ  given by the next equation. 

1(3) 1 3 1 2 2 2( ) 3 ( , , )k A k dτ τ τ τ τ
∞

−∞

= − ∫            (7) 

 
In this way, ( )i jk  denotes the i-th degree kernel derived from the j-th degree kernel. 
 
A is the power of the input white Gaussian signal. We should note that the Wiener G-
functional representation of a nonlinear system was originally developed for white 
Gaussian input, but it is also applicable to a non-white or non-Gaussian input by the use 
of a prewhitening technique. 
 
Given the input white Gaussian signal, what is the relationship between the Volterra 
kernel 1 2( , ,... )i ih τ τ τ  in Equation (1) and the Wiener kernel 1 2( , ,... )i ik τ τ τ  in Eq. (3)? 
When we compare Eq. (1) and Eq. (3), we get 
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Therefore when we wish to identify a nonlinear system using a white Gaussian input by 
a kernel method, obtaining Volterra kernels is equivalent to obtaining Wiener kernels, 
since these two representations have one to one correspondence. 
 
- 
- 
- 
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