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Summary 
 
Mathematical models are an essential part of most branches of science and engineering. 
A mathematical model of a system can for example be used to unveil fundamental 
properties of the system which are not apparent otherwise, leading to a better 
understanding of that system, or in the design of an automatic control system that can be 
used to regulate the behavior of certain system variables. A model of a system can be 
obtained directly from experimental input/output data by determining the model form 
and the numerical values of the unknown parameters. This process is known as system 
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identification. This chapter provides an overview of a nonlinear system identification 
methodology based on the NARMAX model. The NARMAX model is a general 
representation of a nonlinear dynamical system which takes the form of a nonlinear 
difference equation. The NARMAX methodology provides a unified solution to the 
problem of finding this equation based only on experimental data recorded from the 
system of interest. The process of identifying a NARMAX model involves determining 
the form or structure of the unknown nonlinear equation, estimating the parameters 
associated with this particular structure and finally checking or validating the resulting 
model in order to ensure that it describes accurately the real life system.  
 
1. Introduction 
 
Our present knowledge of nature and the universe is a result of a very slow and painful 
process of distilling the information gathered by observing physical, social, moral and 
economic phenomena. It was by thoroughly observing nature that our ancestors realized 
that our world has many features of regularity which could be recorded, analyzed and 
predicted. During the entire history of mankind humans have looked for patterns in their 
environment to improve decision making process. The phases of the moon, the tides, the 
succession of the seasons and even solar eclipses could be predicted by ancient 
civilizations of Egyptians, Chaldeans or Mayans using sophisticated calendars.  
 
The development of mathematics and in parallel of more accurate measurement devices 
lead to the introduction of more accurate mathematical models of the natural processes. 
A crucial step in this direction was the introduction of differential calculus 
independently by Newton and Leibnitz. This allowed the derivation of accurate models 
of dynamical systems in all branches of science and engineering. Heat transfer, 
propagation of the electromagnetic field and gravity could all be described accurately in 
terms of differential equations. Mathematical models are fundamental for the analysis of 
system behavior, in controller design and many scientific and engineering studies. In 
every case an essential requirement of the model is an ability to reproduce the 
dynamical characteristics of the system as closely as possible. At the heart of the 
modeling process are practical experiments which are designed to probe the dynamical 
behavior of systems and to provide experimental data on which to base the modeling 
process. The final model would then be subject to a validation process in which the 
accuracy of the model predictions would be assessed in independent experiments.  
 
The models of the fundamental processes in nature have become physical laws based on 
which models of most systems in the real world can be derived. This can be viewed as 
an axiomatic approach to modeling where the dynamics of a system are described in 
mathematical terms by analyzing its structure and applying elementary laws of physics 
or chemistry that govern its behavior. For many real systems however, this approach is 
not suitable either because the modeler does not have access to the internal structure of 
the system or because the system complexity is so high that the application of 
elementary laws to derive the system’s equations is practically impossible.  
 
In such case an experimental modeling approach is the only solution. During the past 
century this approach to modeling has evolved tremendously and has become a 
cornerstone of engineering practice, especially in the field of Automatic Control where 
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it has been established as a well articulated theory of System Identification.  
 
2. System Identification 
 
In system identification the structure of the dynamical process under sturdy is often 
assumed to be unknown. Deriving a mathematical model of a dynamical system by this 
approach involves in the first stage applying a pre-designed sequence of stimuli, the 
input signal, to the system and recording the responses of the system to these stimuli, 
the output signal. These experiments attempt to capture all the effects the inputs have on 
the observed outputs which constitutes the input/output behavior of the system under 
study.  
 
In the first stage, specific model selection and parameter estimation algorithms are used 
to derive, from the recorded input/output data, a mathematical model of the dynamical 
system which can reproduce the measured output signal when simulated using the same 
input sequence. A large class of dynamical systems can be represented with good 
approximation by linear expressions involving the variables which characterize the 
system. However, although this simple type of mathematical description has formed the 
basis for the development of various theories, such as mathematical control theory, 
ultimately, linear techniques are limited by the fact that real systems are more often than 
not nonlinear. It is true that local analysis and control design can in general be carried 
out satisfactorily using only such models, but there are many cases when a linear 
description of a process is not sufficient and a global, more accurate nonlinear model is 
required.  
 
Depending on whether the variables in the model can be computed at any time instance 
or only at certain discrete instances of time, the models can be classified into 
continuous-time models, such as differential equations and discrete-time models 
described by difference equations. Usually the experimental data is measured/sampled 
at regular time intervals and hence the models used for identification are in most cases 
discrete-time. An advantage of this approach is that there is no need to use additional 
integration routines when simulating discrete-models as would be the case with most 
nonlinear differential equations. The main disadvantage is that the discrete-time models 
are only valid for the chosen sampling time. The last stage of the identification process 
involves performing various model validation tests to ensure that the identified model 
provides an accurate representation of the observed system.  
 
3. Nonlinear vs. Linear Models  
 
The most common misinterpretation of reality is when scientists assume that all systems 
can be modeled using linear techniques. In the early stages the theory of system 
identification was focused mainly on the identification of linear dynamical systems. The 
lack of techniques to deal with nonlinear interactions meant that linearization occurred 
from the moment the equations were set. The common assumption was that a linear 
combination of the variables that characterize a system is sufficient to explain the 
system behavior. This assumption presumes that all the other possible interactions of a 
variable with other variables in the system are sufficiently weak so that for some 
specified conditions the nonlinear interactions may be neglected.  
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It was assumed therefore that physical reality could be segmented, understood piece by 
piece and re-assembled, using the superposition principle, to form a linear model of the 
original system. Any remaining interaction would then be treated as a perturbation of 
the linear solution assuming throughout that this perturbation is not going to 
significantly alter the properties of the system. As linear models cannot reproduce 
dynamical regimes which result from nonlinear interactions such as hysteresis, 
amplitude dependence, bifurcation or chaos, the linear concepts, which literally 
collapsed under the weight of uninterpretable data, had to be replaced in many cases by 
nonlinear ones. Nonlinear dynamics has subsequently been revealed in practically every 
field of science. This made the use of nonlinear representations to describe the observed 
behavior unavoidable and triggered significant advances in nonlinear system 
identification. 
 
One of the most complete and powerful identification methodologies available today for 
the identification of both linear and nonlinear systems is the NARMAX approach. This 
method is based on a general input/output representation of dynamical systems called 
the NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) 
model which is a generalization of the earlier ARMAX (Autoregressive Moving 
Average with eXogenous inputs) representation of linear discrete-time systems. 
Essentially the NARMAX model is a nonlinear difference equation which relates the 
output of the system at a given time instance to values of the inputs, outputs and noise at 
previous time instances.  
 
The NARMAX model can describe a wide range of nonlinear dynamical behaviors and 
includes many other nonlinear model types, such as the Volterra, Hammerstein and 
Wiener models, as special cases. In other words NARMAX provides a one stop solution 
to a wide range of identification problems involving nonlinear systems ranging from 
chaotic electronic circuits and chaotic reactor systems to water management systems, 
turbocharged diesel engines, vasomotion oscillations in the brain or solar plasma 
turbulence. All these examples are only a fraction of real-life system identification 
problems where NARMAX has been successfully applied. In practice the nonlinear 
equation that describes the underlying system is actually not known in advance. The 
NARMAX methodology provides a unified solution to the problem of finding this 
equation based only on experimental data recorded from the system of interest. 
 
4. The NARMAX Model 
 
A dynamical system is a system whose state is characterized in terms of a finite number 
of variables, the state variables, which evolve in time according to a transition rule. The 
transition rule, which in practice may be the solution of a system of differential 
equations or a difference equation in the case of a discrete-time system, can be used to 
determine the state of the system at any future time instant given the current or past state 
of the system. 
 
In many cases the state variables cannot be accessed directly, that is the state values 
cannot be measured by an external observer of the system. What an external observer 
can measure are the outputs of the system. The number of the outputs is not necessarily 
the same as the number of the state variables. The relationship between the state 
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variables and the outputs of the system is usually described by a function known as the 
measurement or observation map. Dynamical systems are often characterized only in 
terms of the input/output behavior which illustrates the effects of the system’s inputs on 
the observed outputs. The assumption is that all the information about the state should 
in principle be recoverable from the output measurements. In many cases it is more 
advantageous to have a direct characterization of the output of the system as a function 
of the input only.  
 
The function that relates directly the inputs and the outputs of a system without 
including explicitly any of the state variables is known as the input/output equation of 
the system. In system identification the input/output behavior of a dynamical system is 
measured experimentally over a finite time interval resulting in a set of input and output 
data samples which are usually contaminated by noise. In this context the system 
identification problem consists in determining the unknown discrete-time input/output 
equation that relates explicitly the sampled outputs of the system ( ), ( 1),...y t y t −  to the 
sampled inputs ( ), ( 1),...u t u t − . Although it is still possible to identify continuous time 
models from this data set, the identification of discrete-time models is usually more 
convenient. Discrete-time models are widely used for simulation an analysis as well as 
in the design of digital control systems.  
 
The NARMAX model is a natural extension of the input/output equations used for 
linear discrete-time systems namely the ARMAX model. The NARMAX model takes 
the form of a set of nonlinear difference equations 
 

( ) ( ( 1),..., ( ), ( ),..., ( ), ( 1),..., ( )) ( )y u ey t f y t y t n u t d u t n e t e t n e t= − − − − − − +  (1) 
 
which relate the inputs and outputs and which takes into account the combined effects 
of measurement noise, modeling errors and unmeasured disturbances represented by the 
variable ( )e k . A rigorous derivation of the NARMAX model and conditions for the 
existence of this model are available in the literature. In the above equations ( )f ⋅  is an 
unknown nonlinear mapping, ( )u t  is the input vector, ( )y t  is the output vector and yn  

and un  are the maximum output and input lags. The noise variable vector ( )e t , which 
cannot be measured directly, is assumed to be bounded | ( ) |e t < δ  and uncorrelated with 
the input and en  is the maximum noise lag. The random variable ( )e t  is also known as 
the prediction error or innovation at time t . 

 
 

Figure 1: Block Diagram of a Nonlinear Dynamical System 
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5. Practical Implementations of the NARMAX Model 
 
The methodology of identifying a NARMAX representation involves estimating both 
the structure and the parameters of the unknown nonlinear system from the input/output 
data. This is quite a formidable task since the number of possible nonlinear 
implementations of ( )f ⋅  is theoretically infinite. Because the form of ( )f ⋅  for a real 
system is rarely known a priori the model is implemented practically using certain 
functions with good approximation properties. In this context finding the nonlinear 
function ( )f ⋅  which best agrees with the experimental data according to some adequacy 
criterion becomes a nonlinear approximation problem where the choice of 
approximating functions is very important. For some types of approximating functions 
for example, the approximation is not guaranteed to converge to an arbitrary function. 
These can be used efficiently for certain families of nonlinear systems. There are a 
number of nonlinear representations that have received a great deal of attention because 
of their excellent approximation properties. Most commonly, NARMAX models can be 
implemented using polynomial and rational representations, neural networks or 
wavelets.  
 
5.1. Polynomials and Rational Implementations 
 
Polynomial models are possibly the most attractive of all nonlinear representations due 
to the inherent simplicity of the model structure and because such models reveal the 
dynamical properties of the underlying system is a very straightforward manner.  
 
The nonlinear map ( )f ⋅ , in this case takes the form of a multivariable polynomial of 
finite degree in all variables 
 

( ) ( )
n

k k
k

f x g= ∑ xθ  (2) 

 
where kθ  are the coefficients of the polynomial, kg  represent multivariable polynomial 
terms up to a given order m  and x  is the vector  
 

[ ( 1),..., ( ), ( 1),..., ( ), ( 1),..., ( )]y u ey t y t n u t u t n e t e t n= − − − − − −x   (3) 
 
of past outputs, inputs and noise. Using polynomial NARMAX models to represent 
nonlinear input/output behavior can be justified by results from approximation theory. 
However it is very important to determine the appropriate terms in a polynomial 
expansion. An important feature of the polynomial model is that it is linear in the 
parameters. Many linear identification results can easily be extended to the polynomial 
nonlinear model and several algorithms for model structure determination and 
parameter estimation exploit this property.  
 
A more general representation which includes polynomial models as a special case is 
the rational representation where ( )f ⋅  is represented as the ratio of two polynomial 
functions  
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( )( )
( )

af
b

=
xx
x

 (4) 

 
where ( )a ⋅  and ( )b ⋅  are polynomials of finite degree. Such nonlinear mappings have the 
advantage that they can represent certain types of singular or near-singular behavior 
which cannot be achieved with polynomials. The main disadvantage is that rational 
models are nonlinear in the parameters and it introduces a number of difficulties in the 
estimation of such representation. However, algorithms which overcome most of these 
difficulties have been developed and applied successfully in practice. 
 
5.2 Neural Network Representations 
 
Artificial neural networks refer to a computational paradigm in which a large number of 
computational units or “neurons” interconnected to form a network perform complex 
computational tasks. This computational model was inspired by neurobiological systems 
that have the capability of learning from examples.  
 
In systems identification the learning process can be associated with the parameter 
estimation and structure selection algorithms.  
 
There are two main types of artificial neural networks which have been used extensively 
in system identification namely Multilayer Perceptron Networks and Radial Basis 
Networks. 
 
5.2.1 Multilayer Perceptron Networks  
 

 
 

Figure 2: (a) Multilayer Perceptron Neural Network Architecture and (b) Model of a 
Neuron 
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Multilayer Perceptron Neural Networks (MLP) consist of one or more hidden layers of 
interconnected computing units or nodes sandwiched between the input and output 
layers. As seen in Figure 2a, the nodes in a layer are connected only with nodes in 
adjacent layers and not with nodes within the same layer. 
 
The input/output relationship of a generic node is illustrated in Figure 2. The output of 
each node is obtained by calculating a weighted sum of the node inputs, adding a bias 
and passing the result through a nonlinear activation function 
 

,0 ,
1

n

j j j i i
i

y g w w x
=

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (5) 

 
where ,j iw  are the node weights and ,0jw  is the bias term. The best known choice of 
activation function is the sigmoid function 
 

1( )
1 exp( )

g v
v

=
+ −

 (6) 

 
The network is in fact just another general function approximation device. Given a set 
of input/output data the network can be trained to learn the underlying relationship by 
adjusting the weights/parameters for each node. Theoretical work has shown that 
actually one layer of nodes is sufficient to approximate any continuous function 
provided that there are sufficient nodes in this layer. 
 
The NARMAX model can be implemented in a straightforward manner using MLP 
Neural Networks with a single hidden layer. In this case expression of the nonlinear 
function ( )f ⋅  in (1) becomes 
 

1 ,0 ,1

( )
1 exp[ ( )]

m j
n

j j j i ii

w
f

w w x= =

=
+ − +

∑
∑

x  (7) 

 
where 1[ ... ]nx x=x  is as before the vector of lagged outputs, inputs and noise and jw  

are the output weights. In this case the function ( )f ⋅  is nonlinear in the parameters ,j iw . 
 
 
 
 
 
 
 
 
 
 
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION – Vol. VI - Identification of NARMAX and Related Models - Stephen 
A. Billings and Daniel Coca 
 

©Encyclopedia of Life Support Systems (EOLSS) 

- 
- 
- 
 

 
TO ACCESS ALL THE 30 PAGES OF THIS CHAPTER,  

Click here 
 

 
Bibliography 
 
Billings, S. A. (1989a). Identification of nonlinear systems – A survey. IEE Proceedings Part D 127,272-
285. [A survey of traditional nonlinear identification procedures.] 

Billings, S. A. and Chen, S. (1989b). Extended model set, global data and threshold model identification 
of severely nonlinear systems. International Journal of Control, 50,1897-1923. [Shows how NARMAX 
can be used to model complex nonlinear systems.] 

Billings, S. A. and Chen, S. (1998). The determination of multivariable nonlinear models for dynamic 
systems. In Leondes, C.T., editor, Neural Network System Techniques and Applications; Control and 
Dynamic Systems Series 7 231-278. [ A comprehensive review of NARMAX modeling techniques for 
multivariable nonlinear dynamic systems.] 

Billings, S. A., Chen, S. and Kronenberg, M. J. (1988). Identification of MIMO Non-linear Systems using 
a Forward-regression Orthonormal Estimator. International Journal of Control, 50,2157-2189. [Discusses 
the identification of multi-input multi-output nonlinear systems using the orthogonal least squares (OLS) 
algorithm.] 

Chen, S. and (1989) Billings, S. A. (1989). Representations of non-liner systems: the NARMAX model. 
International Journal of Control, 49,1013-1032. [Describes the range of systems that NARMAX can be 
applied to.] 

Haber, R. and Unbehauen, H. (1990). Structure Identification for Nonlinear Dynamical Systems. A 
survey on Input-Output Approaches. Automatica, 26,651-677. [Reviews the identification of certain 
classes of nonlinear systems.] 

Leotaritis, I. and Billings, S. A. (1985a). Input-Output Parametric Models for Non-linear Systems- Part I: 
Deterministic Non-linear Systems. International Journal of Control, 41, 303-328; (1985b) Input-Output 
Parametric Models for Non-linear Systems –Part II: Stochastic Non-linear Systems. International Journal 
of Control, 41, 329-344. [Formal introduction to the NARMAX model.] 

Juditski, A., Hjalmarsson, H., Beneviste, B., Deylon, H., Ljung, L., Sjóberg, J. and Zhang, Q. (1995). 
Nonlinear Black-Box Models in System  Identification: Mathematical Foundations. Automatica, 31, 
1725-1750. [Discusses the theoretical foundation of various nonlinear model implementations.] 

Person, R. K. (1995). Nonlinear input/output modeling. Journal of Process Control, 5,197-211. [A good 
abbreviated overview of empirical nonlinear modeling and identification.] 

Person, R. K. and Ogunnaike, B.A. (1997). Nonlinear process identification. In Henson, M. A. and 
Seborg, D. E., editors, Nonlinear Process Control, chapter 2. Prentice Hall, Englewood Cliff. [Excellent 
review of nonlinear system identification.] 

Swain, A. K., Billings, S. A., Stansby, P.K. and Baker, M. (1998). Accurate predictions of nonlinear wave 
forces; Part I: Fixed cylinder. Mechanical Systems and Signal Processing, 21,449-485. [Shows how 
NARMAX can be used in practice to determine fundamental models.] 
 
Biographical Sketches 
 
Stephen A Billings received the BEng degree in Electrical Engineering with first class honours from the 
University of Liverpool in 1972, the degree of PhD in Control Systems Engineering from the University 

http://www.eolss.net/Eolss-sampleAllChapter.aspx
https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-43-10-03


UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION – Vol. VI - Identification of NARMAX and Related Models - Stephen 
A. Billings and Daniel Coca 
 

©Encyclopedia of Life Support Systems (EOLSS) 

of Sheffield in 1976, and the degree of DEng from the University of Liverpool in 1990. He is a Chartered 
Engineer [CEng] , Chartered Mathematician [CMath], Fellow of the IEE [UK] and Fellow of the Institute 
of Mathematics and its Applications. 

He was appointed as Professor in the Department of Automatic Control and Systems Engineering, 
University of Sheffield, UK in 1990 and leads the Signal Processing and Complex Systems research 
group. His research interests include system identification and information processing for nonlinear 
systems, narmax methods, model validation, prediction, spectral analysis, adaptive systems, nonlinear 
systems analysis and design, neural networks, wavelets, fractals, machine vision, cellular automata, 
spatio-temporal systems, fMRI and optical imagery of the brain, metabolic systems engineering, systems 
biology and related fields. The Institute of Scientific Information in the USA has recently identified 
Professor Billings as one of the world’s most highly cited researchers in all branches of engineering over 
the past 20 years. 
 
Daniel Coca received the MEng degree in Electrical Engineering with first class honors from 
“Transilvania” University of Brasov in 1993 and the PhD degree in Control Systems Engineering from 
the University of Sheffield in 1997. He is a Chartered Engineer [CEng] and member of the IEE [UK].  

He is currently a lecturer in the Department of Automatic Control and Systems Engineering, University of 
Sheffield, UK. His research interests include nonlinear and complex systems identification, control 
theory, distributed parameter systems, protein identification using MALDI-TOF mass spectrometry, brain 
activity modeling based on neuroimaging data, modeling and analysis of solar wind-magnetosphere 
interaction. 
 


